Рассмотрение счётных множеств и, в частности, натурального ряда требует менее высокого уровня абстракции, чем рассмотрение множеств континуальных. (Ведь даже представление о множестве всех точек прямой – это довольно сложная абстракция.) Поэтому счётная аксиома выбора вызывает меньше недоверия, нежели континуальная (и тем более нежели связанная с ещё более высокими мощностями). Вот что в 1905 г. писал Борель о несчётной аксиоме выбора в краткой заметке, давшей толчок к его упоминавшейся переписке с Адамаром и др.: «Возражения, которые можно выставить здесь, действительны и для всякого рассуждения, в котором предполагается
В функциональном анализе используется и аксиома выбора в общем виде (т. е. в той формулировке, где на мощность рассматриваемой коллекции множеств не налагается никаких ограничений): она участвует, например, в доказательстве теоремы Хана – Банаха. С её помощью доказывается и теорема о том, что каждый фильтр на каком-либо множестве вкладывается в ультрафильтр на том же множестве и, как следствие, что на всяком бесконечном множестве существует нетривиальный (он же свободный) ультрафильтр, т. е. такой ультрафильтр, который не содержит конечных множеств. Аксиома выбора в общем виде эквивалентна известной
18. Термин «неперечислимый» используется здесь в смысле 'несчётный'. В наши дни такая терминология не применяется, а указанный термин имеет другое значение. (Это другое значение связано с теорией алгоритмов. А именно: непустое множество конструктивных объектов называется
19. Применительно к аксиоме Цермело обещание Гильберта было осуществлено Куртом Гёделем в 1938 г. Гёдель доказал, что добавление этой аксиомы к другим, «менее спорным», аксиомам теории множеств не в состоянии вызвать противоречия – при условии, правда, что совокупность этих других аксиом сама непротиворечива. При том же условии через четверть века было доказано (это сделал Коэн), что аксиома Цермело не выводима из других аксиом теории множеств. При этом непротиворечивость системы аксиом теории множеств (будь то с аксиомой Цермело или без оной) приходится принимать на веру, поскольку доказать её невозможно в принципе – по крайней мере с помощью тех средств, которые доступны современной математике; это вытекает из так называемой
20.
21. В 1930 г. надежда на то, что программа Гильберта в своём развитии способна охватить всю математику, была разрушена знаменитой