Читаем Апология математики (сборник статей) полностью

Рассмотрение счётных множеств и, в частности, натурального ряда требует менее высокого уровня абстракции, чем рассмотрение множеств континуальных. (Ведь даже представление о множестве всех точек прямой – это довольно сложная абстракция.) Поэтому счётная аксиома выбора вызывает меньше недоверия, нежели континуальная (и тем более нежели связанная с ещё более высокими мощностями). Вот что в 1905 г. писал Борель о несчётной аксиоме выбора в краткой заметке, давшей толчок к его упоминавшейся переписке с Адамаром и др.: «Возражения, которые можно выставить здесь, действительны и для всякого рассуждения, в котором предполагается произвольный выбор, совершённый несчётное множество раз; такие рассуждения находятся вне пределов математики» (Remarques sur les principes de la théorie des ensembles // Mathematische Annalen. 1905. B. 60. S. 194–195). При любом конкретном применении аксиомы выбора можно ограничиться её частным вариантом, связанным с конкретной мощностью соответствующей коллекции множеств. Иногда удаётся добиться понижения этой мощности, как это мы видели только что на примере континуальной аксиомы выбора.

В функциональном анализе используется и аксиома выбора в общем виде (т. е. в той формулировке, где на мощность рассматриваемой коллекции множеств не налагается никаких ограничений): она участвует, например, в доказательстве теоремы Хана – Банаха. С её помощью доказывается и теорема о том, что каждый фильтр на каком-либо множестве вкладывается в ультрафильтр на том же множестве и, как следствие, что на всяком бесконечном множестве существует нетривиальный (он же свободный) ультрафильтр, т. е. такой ультрафильтр, который не содержит конечных множеств. Аксиома выбора в общем виде эквивалентна известной лемме Цорна, широко используемой в абстрактной алгебре, а также теореме Цермело о том, что всякое множество можно вполне упорядочить. В вышеназванной краткой заметке Борель указывал, что в теореме Цермело фактически доказывается не утверждение о возможности полного упорядочения любого множества, а лишь эквивалентность этого утверждения аксиоме выбора.

18. Термин «неперечислимый» используется здесь в смысле 'несчётный'. В наши дни такая терминология не применяется, а указанный термин имеет другое значение. (Это другое значение связано с теорией алгоритмов. А именно: непустое множество конструктивных объектов называется перечислимым, коль скоро его можно расположить в вычислимую последовательность, и неперечислимым – в противном случае; пустое множество считается перечислимым по определению.)

19. Применительно к аксиоме Цермело обещание Гильберта было осуществлено Куртом Гёделем в 1938 г. Гёдель доказал, что добавление этой аксиомы к другим, «менее спорным», аксиомам теории множеств не в состоянии вызвать противоречия – при условии, правда, что совокупность этих других аксиом сама непротиворечива. При том же условии через четверть века было доказано (это сделал Коэн), что аксиома Цермело не выводима из других аксиом теории множеств. При этом непротиворечивость системы аксиом теории множеств (будь то с аксиомой Цермело или без оной) приходится принимать на веру, поскольку доказать её невозможно в принципе – по крайней мере с помощью тех средств, которые доступны современной математике; это вытекает из так называемой второй теоремы Гёделя.

20. Метаматематикой называют дисциплину, объектом которой являются математические теории (это, так сказать, «теория теорий»).

21. В 1930 г. надежда на то, что программа Гильберта в своём развитии способна охватить всю математику, была разрушена знаменитой теоремой Гёделя о неполноте (называемой также первой теоремой Гёделя). Согласно этой теореме, при любой разумной попытке формализовать понятие доказательства неизбежно обнаруживаются утверждения, которые невозможно ни доказать, ни опровергнуть в рамках избранной формализации. Такие утверждения называются неразрешимыми (в данной теории!). Ясно, что если утверждение неразрешимо, то неразрешимо и его отрицание. Каждое неразрешимое утверждение можно без появления противоречий присоединить к исходным аксиомам теории; в расширенной таким способом теории наше утверждение перестанет быть неразрешимым: оно станет доказуемым, а его отрицание – опровержимым. Однако для расширенной теории снова можно будет указать неразрешимое в ней утверждение и т. д.

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука