4. Например, в параграфе 13 монографии S. С. Kleene «Introduction to Metamathematics» (N. Y., Toronto, 1952; русский перевод: Клини С. К. Введение в метаматематику. – М., 1956) показывается, что при доказательстве теоремы о существовании наименьшей верхней грани используются рассуждения, сходные с теми, которые в другой ситуации приводят к знаменитому парадоксу Рассела о множестве всех множеств, не содержащих самого себя в качестве элемента. Ниже, в разделе III статьи А. Н. Колмогорова, этот парадокс Рассела будет изложен.
5. Сейчас английская фамилия Russell передаётся как Рассел.
6. Сейчас голландская фамилия Brouwer передаётся как Брауэр.
7. Русский перевод: Гильберт Д. Основания геометрии. – М.-Л., 1948.
8. Такая система предметов и отношений называется
9. В литературе по основаниям математики термин
10. Значение термина «предмет» имеет более абстрактный характер, чем значение термина «вещь». Ср. «предмет исследований» и «С вещами на выход!».
11. Сейчас трансфинитные числа, т. е. порядковые типы вполне упорядоченных множеств, чаще называют
12. В частности, без этого принципа невозможно доказать такие общеизвестные факты: эквивалентность различных определений непрерывности функции в заданной точке; наличие у произвольного бесконечного множества счётного подмножества; счётность счётного объединения счётных множеств; счётную аддитивность меры Лебега и т. п. Вспомнив соответствующие доказательства, нетрудно обнаружить применения этого принципа.
13. В наших комментариях для удобства условимся говорить «коллекция множеств» вместо «множество множеств». К приведённой в комментируемой статье формулировке принципа произвольного выбора, или аксиомы Цермело, необходимо добавить, что никакие два различных множества из рассматриваемой коллекции не должны иметь общих элементов (а иначе требуемого множества может и не существовать).
14. Читателю полезно отдавать себе отчёт в том, что в примере с сапогами соответствующая конструкция как раз имеется: она состоит в образовании множества правых сапог. Теперь представим себе, что каждая пара состоит из двух правых сапог одинакового размера и цвета. Тогда предложенная конструкция не работает и однозначно определить или назвать какое-либо множество сапог, содержащее ровно по одному сапогу из каждой пары, не представляется возможным. Именно неконструктивность по сути аксиомы Цермело (она же