Но известно в силу известной теоремы Кантора, что для действительных чисел нельзя дать регулярного метода обозначения каждого из них при помощи конечных комбинаций заранее определённого запаса символов. Это вызывается тем, что континуум действительных чисел неперечислим [18], т. е. не может быть занумерован натуральными числами так, чтобы каждому его элементу соответствовал свой собственный номер. Броуэр и делает основным предметом своего изучения способы задания элементов континуума. При этом он рассматривает континуум в форме совокупности последовательностей натуральных чисел; другие представления континуума могут быть сведены к этому, и их рассмотрение привело бы к тем же результатам.
Итак, элементом континуума является бесконечная последовательность натуральных чисел
Такая последовательность не может быть написана вся полностью. Если мы хотим дать какую-либо одну определённую последовательность, то мы можем определить её только посредством некоторого закона её образования, например такого:
который позволил бы последовательно находить её элементы. Но закон образования не есть сама последовательность; двум различным законам может соответствовать одна и та же последовательность. Например, определённая выше последовательность может быть получена ещё по формуле
Сама же последовательность, независимо от того или иного способа её задания, по Броуэру, может мыслиться только как незаконченная, становящаяся. Но тогда это не есть последовательность, определённая до конца, так как ещё неизвестно, каковы будут её элементы, следующие за уже определёнными. Такую последовательность Броуэр называет «свободной последовательностью», характер которой может быть ограничен только указанием конечного числа её первых элементов. Но раз последовательность мыслима только как становящаяся, то исчезает сам континуум в качестве совокупности множества элементов. Континуум остаётся, как говорит Броуэр, только той средой, в которой развёртывается становящаяся последовательность. Задание конечного числа элементов последовательности лишь выделяет из континуума известную часть, в которой после этого она обязана оставаться. Геометрически становящаяся последовательность соответствует точке, положение которой на прямой определяется со всё бóльшим приближением, но никогда не даётся вполне точно.
Правда, при помощи того или иного закона развёртывания последовательности можно в этом текучем и подлинно непрерывном континууме выделить одну или несколько вполне определённых точек, но, по Броуэру, это уже вторичное явление. К тому же в силу неперечислимости [18] континуума мы никогда не исчерпаем его полностью.
Таким образом, Броуэр считает, что никакой совокупности предметов, удовлетворяющей обычным аксиомам, определяющим действительное число, нет. Естественно, что вместе с этим отпадает и возможность излагать геометрию в духе Гильбертовых «Оснований» как теорию «системы вещей», удовлетворяющих геометрическим аксиомам. Понятие множества как собрания предметов вообще почти исчезает в концепции Броуэра. Вместо этого даётся определение множества как закона построения его элементов. С этого определения начинается положительная работа интуиционистов над построением математики на новых основаниях. При этом, особенно Вейлем, подчёркивается, что вместо теоретического описания объективно данного на первый план выдвигается известная деятельность – конструктивное творчество.
Особенно много споров и недоразумений вызывает то, что Броуэр с этой перестройкой математики связывает и реформу логики, именно отрицание неограниченной применимости принципа исключённого третьего. Вопрос этот заслуживал бы более подробного освещения, но это заняло бы слишком много места. Здесь мы заметим только, что необходимость отказаться от принципа исключённого третьего тесно связывается интуиционистами с утратой математикой чисто теоретического характера. Принцип исключённого третьего по Броуэру неприменим лишь к суждениям особого рода, в которых теоретическое высказывание неразрывно связано с построением объекта высказывания. Поэтому можно предполагать, что идеи Броуэра вовсе не находятся на самом деле в противоречии с традиционной логикой, которая собственно никогда не имела дела с подобными суждениями.
Гильберт, давший в «Основаниях геометрии» известнейшее изложение теоретико-множественного взгляда на математику, выступает теперь в ряде статей с совершенно противоположными взглядами. Правда, их зародыши можно проследить и в некоторых местах «Оснований», и первое время вся глубина различия двух точек зрения не была замечена. Новый взгляд Гильберта заключается в том, что для оправдания построения геометрии или иной математической дисциплины нет никакой надобности доказывать существование соответствующей системы предметов конструктивным путем, достаточно доказать непротиворечивость аксиом.