А вот вам ещё один пример – эйлерова характеристика поверхности.
Вообразим себе планету, поверхность которой состоит из материка и окружающего его океана. На материке расположены страны, каждая из которых как геометрическая фигура гомеоморфна кругу. (Для ясности: Италия не такова, в состав её входят острова, и уже потому она не гомеоморфна кругу. Впрочем, не такова и её материковая часть, поскольку Ватикан и Сан-Марино создают в ней «дыры».) Океан, царство Нептуна, также объявляется страной. Нарисуем на глобусе политическую карту планеты. Узлом назовём всякую точку, где сходятся несколько границ, ребром – участок границы между соседними узлами. К общему числу стран прибавим общее число узлов и затем вычтем общее число рёбер. Мы обязательно получим число два. Данный факт и составляет содержание знаменитой теоремы Эйлера, в справедливости которой приглашаем читателя убедиться на примерах. Число два называется эйлеровой характеристикой сферы.Оказывается, эйлерова характеристика существует у многих поверхностей (в частности, у любой компактной поверхности, а что это такое, будет разъяснено в главе 11). Наличие у данной поверхности эйлеровой характеристики означает следующий замечательный факт: какую карту ни начерти на рассматриваемой поверхности, вычитание числа границ из суммы числа стран и числа узлов всегда даёт один и тот же результат. Любознательный читатель может сам подобным же образом вычислить эйлерову характеристику поверхности тора и убедиться, что она равна нолю. Для этого достаточно нарисовать какую-нибудь карту на торе, не забывая при этом, что каждая страна должна быть гомеоморфна кругу, а затем из суммы числа стран и числа узлов вычесть число рёбер.
Все приведённые наглядные примеры принадлежат геометрии положения
. Довольно давно было замечено, что некоторые геометрические задачи, подобные задаче о пяти городах и дорогах между ними, имеют качественный (а не количественный!) характер. Вот другая задача того же типа: провести непересекающиеся дороги от каждого из трёх домов к каждому из трёх колодцев; ни на плоскости, ни на сфере это невозможно, но возможно на поверхности тора. Для исследования таких задач совершенно несущественны размеры фигур и даже пропорции этих размеров – существенно лишь взаимное расположение точек и линий. Математическую дисциплину, которая этим занимается, ещё до её возникновения Лейбниц предложил называть Analysis situs (анализ положения) или Geometria situs (геометрия положения). Пуанкаре писал в трактате «Наука и метод» в главе «Будущее математики»:Есть дисциплина, которую называют Analysis situs и предметом изучения которой являются соотношения расположений различных элементов фигуры независимо от их величины. Эта геометрия – чисто качественная: её теоремы остались бы справедливыми, если бы точные фигуры были заменены грубыми изображениями, созданными ребёнком. Можно построить также Analysis situs более чем трёх измерений. Важность Analysis situs огромна, и я не думаю, чтобы его значение могло быть преувеличено…
Смеем надеяться, что слова о более чем трёх измерениях не остались не замеченными читателем.
Есть две известные задачи геометрии положения, взятые из реальной жизни, причём вторая имела и практическое значение.