В 1976 г. было анонсировано, а в 1977 г. изложено доказательство того, что для сферы и плоскости всегда хватает и четырёх цветов; однако оно очень сложно и к тому же опирается на длительные компьютерные вычисления; поэтому не все убеждены в полной корректности этого доказательства. Тем не менее практически все уверены, что хроматическое число сферы и плоскости равно 4.
Всё это факты геометрии положения, где точная форма не имеет значения. Карту можно нарисовать не на плоскости, а на платке, сам же платок смять; сферу можно подвергнуть сжатию, растяжению, сминанию и вообще любой деформации без разрывов и склеиваний, превратить её в поверхность груши, например; тор можно растянуть; крендель – сдавить. Хроматические числа от этого не изменятся.
Глава 11
От геометрии положения к топологии
Продолжим наши попытки разъяснить формулировку гипотезы Пуанкаре. С этой целью прежде всего напомним эту формулировку:
«Да что же это такое?! – в сердцах воскликнет читатель. – Автор не удосужился даже перечитать ту формулировку, которую сам же привёл в конце главы 9! Ведь там не было слов "без края"!» Действительно, не было. Дело в том, что математическая терминология точна, но, к сожалению, не однозначна: один и тот же термин подчас употребляется, увы, в разных смыслах. (Мы уже столкнулись с неоднозначностью термина «натуральное число»: при одном понимании число ноль считается натуральным, при другом – нет.) В применении к многообразиям в ходу две терминологические системы. Первая допускает, что многообразия могут как иметь край, так и не иметь его; в её рамках противопоставляются
В приведённой только что формулировке выделим понятия, разъяснения коих сделает формулировку понятной. Понятие компактного многообразия без края естественно расщепляется на два: 'компактное многообразие' и 'многообразие без края'. Тогда возникают пять понятий: 'односвязное', 'компактное многообразие', 'многообразие без края', 'гомеоморфно', 'трёхмерная сфера'.
Что такое трёхмерная сфера, мы, как могли, объяснили в предыдущей главе. Самым простым из тех четырёх понятий, которые ещё осталось разъяснить, является понятие
Односвязность
Представим себе резинку, которую продают под названием «банковская» и одни называют канцелярской, другие аптечной, т. е. резиновую нить со склеенными концами; при покупке небольшого числа мелких предметов, скажем, карандашей в магазине канцелярских принадлежностей или конвалют (пластиковых матриц с ячейками для таблеток или пилюль) в аптеке, ею часто скрепляют покупку. Вообразим резинку столь упругой, что она, если её не удерживать, стремится стянуться в точку, и столь умной, что ради стягивания в точку она готова пойти и на растяжение: например, если натянуть резинку на «талию» песочных часов, она, чтобы сжаться в точку на вершине колбы, вынуждена будет растянуться, проходя через верхнюю половину колбы. Геометрическая фигура называется