Отниел Чарлз Марш был сторонником дарвинизма, и ему удалось, благодаря своим достижениям, обеспечить поддержку дарвиновской теории и предоставить экземпляры, заполняющие пробелы в палеонтологической летописи. Марш в 1862 и 1865 гг. встречался с Дарвином в Англии. В 1875 г. Марш подробно описал полученные им данные о зубатых птицах,
Гены, ДНК и количественная биология
Грегор Мендель (1822–1884), основоположник генетики, изучал изменения организмов (на растениях гороха), обусловленные признаками, связанными с независимыми единицами наследственности. Мендель описал передачу наследственных признаков, изучая единицы наследственности, названные впоследствии генами, и сформулировал законы наследственности[325]
. Дарвин разработал теорию естественного отбора, ничего не зная о генах. Термин «ген» и его определение предложил датский ботаник Вильгельм Иогансен только в 1909 г.[326]. Однако за сорок лет до этого, в 1869 г., шведский физиолог Иоганн Фридрих Мишер (1844–1895) впервые выделил ДНК[327]. Мишер изучал лейкоциты и выделил из их ядер новое вещество, не относящееся ни к белкам, ни к липидам (классу органических веществ, содержащих остатки жирных кислот), которое он назвал нуклеином и которое впоследствии было названо дезоксирибонуклеиновой кислотой (ДНК). Мишер даже не представлял, что это вещество может иметь какое-то отношение к наследственности. Тот факт, что ДНК является носителем генетической информации и структурным элементом хромосом, был установлен лишь в 1944 г. канадско-американским молекулярным биологом Освальдом Эйвери[328]. Американский биолог Джеймс Уотсон и английский физик Фрэнсис Крик стали знаменитыми благодаря открытию в 1953 г. структуры ДНК – двойной спирали, – что позволило сделать предположения о механизме репликации генов[329]. Их фраза стала знаменитой: «Мы вполне отдаем себе отчет в том, что установленное нами специфическое спаривание непосредственно указывает на возможный механизм копирования вещества наследственности»[330][331]. Молекула ДНК состоит из двух очень длинных цепочек, образованных из структурных элементов (мономеров) – нуклеотидов – четырех видов. Нуклеотиды содержат остатки сахара (дезоксирибозы), фосфорной кислоты и одно из четырех азотистых оснований: аденин (А), цитозин (C), гуанин (G) и тимин (Т). Нуклеотидные последовательности определяют создание белков в результате множества возможных сочетаний и комбинаций.ДНК предоставляет дополнительные доказательства эволюционного процесса. Виды, чьи предки разошлись ранее в далеком прошлом, имеют больше различий в ДНК в результате мутаций и рекомбинации («перетасовывания» аллелей разных генов во время мейоза (деления клетки), чем генетически более близкие виды, расположенные на эволюционном древе. Ученые говорят о молекулярных часах – концепция впервые предложена американским биохимиком Лайнусом Полингом и французским биологом Эмилем Цукеркандлем в 1962 г., – методе оценки по мутациям генов, позволяющем определить, насколько далеко разошлись виды друг от друга в эволюционном смысле. Скорости молекулярных часов отличаются у разных видов.
В 1959 г., через сто лет после публикации революционной работы Дарвина, теория эволюции получила дальнейшую поддержку в виде открытий в сфере молекулярной биологии. Исследователи выяснили, что белки гемоглобин и миоглобин похожи у всех организмов, и можно определить последовательность их аминокислот, что придало еще больше веса идее об общем предке. На основании этих открытий биологи разработали, исходя из информации о конкретных видах, генеалогическое древо (филогенетическое древо) генов этих двух белков, показывающее взаимосвязь организмов друг с другом[332]
. Эта работа подтвердила существование трех доменов живых организмов – археи, истинные бактерии и эукариоты, – которые уже были выделены на основании изучения окаменелостей и анатомии. В наши дни ученые используют для подобных целей и другие молекулы, такие, например, как цитохром