Читаем C++17 STL Стандартная библиотека шаблонов полностью

С правой стороны мы видим план, где задачи выполняются максимально распараллеленно. В идеальном мире, где все компьютеры имеют четыре ядра, можно создать все подстроки одновременно, а затем сконкатенировать их. Минимальное время получения результата с оптимальным параллельным планом равно 16 секундам. Мы не можем ускорить выполнение программы, если не сделать сами вызовы функций быстрее. Имея всего четыре ядра ЦП, можно добиться этого времени выполнения. Мы достигли оптимального расписания. Как оно работает?

Мы могли бы просто написать следующий код:

auto a (async(launch::async, create, "foo "));

auto b (async(launch::async, create, "bar "));

auto c (async(launch::async, create, "this "));

auto d (async(launch::async, create, "that "));

auto e (async(launch::async, concat, a.get(), b.get()));

auto f (async(launch::async, concat, c.get(), d.get()));

auto g (async(launch::async, twice, e.get()));

auto h (async(launch::async, concat, g.get(), f.get()));

Это хорошее начало для a, b, c и d, которые представляют четыре подстроки. Они создаются асинхронно в фоновом режиме. К сожалению, этот код блокируется в строке, где мы инициализируем e. Чтобы сконкатенировать a и b, нужно вызвать get() для обеих подстрок, данный код будет заблокирован до тех пор, пока данные значения не будут готовы. Очевидно, это плохая идея, поскольку распаралелливание перестает быть паралелльным после первого вызова get(). Требуется более хорошая стратегия.

Задействуем сложные вспомогательные функции, которые мы написали. Первая из них — это asynchronize:

template

static auto asynchronize(F f)

{

  return [f](auto ... xs) {

    return [=] () {

      return async(launch::async, f, xs...);

    };

  };

}

При наличии функции int f(int, int) можно сделать следующее:

auto f2 ( asynchronize(f) );

auto f3 ( f2(1, 2) );

auto f4 ( f3() );

int result { f4.get() };

Функция f2 — это наша асинхронная версия функции f. Ее можно вызвать с теми же аргументами, что и функцию f, поскольку f2 подражает ей. Затем она возвращает вызываемый объект, который мы сохраняем в f3. Функция f3 теперь захватывает f и аргументы 1, 2, но пока ничего не вызывает. Это все делается ради захвата.

Теперь при вызове функции f3() мы наконец получаем объект типа future, поскольку f3() делает вызов async(launch::async,f,1,2);! В некотором смысле семантическое значение f3 заключается в следующем: «Получить захваченную функцию и аргументы, а затем передать их в вызов std::async».

Внутреннее лямбда-выражение, которое не принимает никаких аргументов, позволяет пойти по нестандартному пути. С его помощью можно настроить работу для параллельной отправки, но не нужно вызывать никаких блокирующих функций. Мы следуем тому же принципу в гораздо более сложной функции async_adapter:

template

static auto async_adapter(F f)

{

  return [f](auto ... xs) {

    return [=] () {

      return async(launch::async, fut_unwrap(f), xs()...);

    };

  };

}

Данная функция также сначала возвращает функцию, которая подражает f, поскольку принимает те же аргументы. Затем эта функция возвращает вызываемый объект, который тоже не принимает аргументов. В результате упомянутый вызываемый объект наконец отличается от другой вспомогательной функции.

Каково значение строки async(launch::async, fut_unwrap(f),xs()...);? Часть xs()... означает предположение, что все аргументы, которые сохраняются в наборе параметров xs, являются вызываемыми объектами (как те, что мы постоянно создаем!) и, как следствие, вызываются без аргументов. Эти вызываемые объекты, постоянно создаваемые нами, производят значения типа future, для которых мы вызываем функцию get(). Здесь вступает в действие функция fut_unwrap:

template static auto fut_unwrap(F f)

{

  return [f](auto ... xs) {

    return f(xs.get()...);

  };

}

Функция fut_unwrap просто преобразует функцию f в объект функции, который принимает диапазон аргументов. Данный объект вызывает функцию .get() для них всех и наконец перенаправляет их к f.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Язык программирования Euphoria. Справочное руководство
Язык программирования Euphoria. Справочное руководство

Euphoria (юфо'ри, также рус. эйфори'я, ра'дость) — язык программирования, созданный Робертом Крейгом (Rapid Deployment Software) в Канаде, Торонто. Название Euphoria — это акроним для «End-User Programming with Hierarchical Objects for Robust Interpreted Applications».Euphoria — интерпретируемый императивный язык высокого уровня общего назначения. C помощью транслятора из исходного кода на Euphoria может быть сгенерирован исходный код на языке Си, который в свою очередь может быть скомпилирован в исполнияемый файл или динамическую библиотеку при помощи таких компиляторов, как GCC, OpenWatcom и др. Программа Euphoria также может быть «связана» с интерпретатором для получения самостоятельного исполняемого файла. Поддерживается несколько GUI-библиотек, включая Win32lib и оберток для wxWidgets, GTK+ и IUP. Euphoria имеет встроенную простую систему баз данных и обертки для работы с другими типам баз данных.[Материал из Википедии]

Коллектив авторов

Программирование, программы, базы данных