Читаем C++17 STL Стандартная библиотека шаблонов полностью

Адаптер istream_iterator тоже довольно удобен. Он подходит для любого объекта std::istream (который может представлять собой стандартный поток ввода или файлы) и будет пытаться преобразовывать полученные данные в соответствии с параметром шаблона. В этом примере мы использовали конструкцию std::istream_iterator(std::cin), получающую из потока ввода целые числа.

Как правило, мы не знаем длину потока. Это оставляет открытым вопрос: куда указывает конечный итератор, если нам неизвестно, где заканчивается поток? Суть в том, что итератор знает, когда достигает конца потока. При сравнении с конечным итератором он фактически не будет сравнивать себя с конечным итератором, но даст знать, остались ли токены в потоке. Именно поэтому конструктор конечного итератора не принимает никаких аргументов.

std::ostream_iterator

Адаптер ostream_iterator аналогичен адаптеру istream_iterator, но работает по обратному принципу: не принимает токены из потока ввода, а отправляет их в поток вывода. Еще одно отличие заключается в том, что его конструктор принимает второй аргумент, являющийся строкой, которая будет помещена в поток вывода после каждого элемента. Это полезно, поскольку таким способом можно вывести на экран разделяющую запятую ", " или символ перехода на новую строку. 

<p id="AutBody_Root37"><strong>Реализуем алгоритмы с помощью итераторов</strong></p>

Итераторы обычно итерируют, переходя с одного элемента контейнера на другой. Но не обязательно использовать итераторы только для того, чтобы итерировать по структурам данных. Они вполне подходят для реализации алгоритмов, в таком случае будут высчитывать следующее значение при инкрементировании (++it) и возвращать это значение при разыменовании (*it).

В данном разделе мы рассмотрим этот принцип, реализовав функцию, выводящую на экран последовательность чисел Фибоначчи с помощью итераторов. Такая функция рекурсивно определяется следующим образом: F(n) = F(n-1)+F(n-2). Она начинается со стартовых значений F(0) = 0 и F(1) = 1. Это приводит к появлению такой последовательности чисел:

□  F(0) = 0;

□  F(1) = 1;

□  F(2) = F(1)+F(0) = 1;

□  F(3) = F(2)+F(1) = 2;

□  F(4) = F(3)+F(2) = 3;

□  F(5) = F(4)+F(3) = 5;

□  F(6) = F(5)+F(4) = 8;

□  ... и т.д.

Если мы реализуем это в форме вызываемой функции, которая возвращает значение Фибоначчи для любого числа n, то получим рекурсивную функцию, вызывающую саму себя, или цикл. Такой результат приемлем, но что, если мы напишем программу, принимающую числа Фибоначчи по некоему шаблону одно за другим? У нас есть два варианта: либо выполнять все рекурсивные вызовы для каждого числа Фибоначчи (это, по сути, растрата вычислительного времени), либо сохранять два последних числа во временных переменных и использовать их для вычисления следующего. Во втором случае придется объединить код функции Фибоначчи и код остальной части нашей программы, которая решает другую задачу:

size_t a {0};

size_t b {1};

for (size_t i {0}; i < N; ++i) {

  const size_t old_b {b};

  b += a;

  a = old_b;

  // сделаем что-нибудь с b, текущим числом Фибоначчи

}

Итераторы позволяют решить задачу оригинальным способом. Можно обернуть шаги, которые нужно сделать в реализации, основанной на цикле функции Фибоначчи, в префиксный оператор ++ итератора. В данном разделе вы увидите, как просто это сделать.

Как это делается

В этом примере мы сконцентрируемся на реализации итератора, который генерирует числа на основе последовательности чисел Фибоначчи.

1. Чтобы иметь возможность вывести на экран числа Фибоначчи, включим соответствующий заголовочный файл:

#include

2. Определим итератор Фибоначчи, fibit. Он будет содержать член i, в котором будет сохраняться индекс позиции в последовательности Фибоначчи, а также члены a и b, в которых будут храниться два последних значения Фибоначчи. При вызове конструктора по умолчанию итератор Фибоначчи инициализируется значениями F(0).

class fibit

{

  size_t i {0};

  size_t a {0};

  size_t b {1};

3. Далее определим стандартный конструктор и конструктор, который позволит инициализировать итератор любым этапом вычисления чисел Фибоначчи:

public:

  fibit() = default;

  explicit fibit(size_t i_)

    : i{i_}

  {}

4. Разыменование итератора (*it) вернет текущее число Фибоначчи на данном шаге:

  size_t operator*() const { return b; }

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Язык программирования Euphoria. Справочное руководство
Язык программирования Euphoria. Справочное руководство

Euphoria (юфо'ри, также рус. эйфори'я, ра'дость) — язык программирования, созданный Робертом Крейгом (Rapid Deployment Software) в Канаде, Торонто. Название Euphoria — это акроним для «End-User Programming with Hierarchical Objects for Robust Interpreted Applications».Euphoria — интерпретируемый императивный язык высокого уровня общего назначения. C помощью транслятора из исходного кода на Euphoria может быть сгенерирован исходный код на языке Си, который в свою очередь может быть скомпилирован в исполнияемый файл или динамическую библиотеку при помощи таких компиляторов, как GCC, OpenWatcom и др. Программа Euphoria также может быть «связана» с интерпретатором для получения самостоятельного исполняемого файла. Поддерживается несколько GUI-библиотек, включая Win32lib и оберток для wxWidgets, GTK+ и IUP. Euphoria имеет встроенную простую систему баз данных и обертки для работы с другими типам баз данных.[Материал из Википедии]

Коллектив авторов

Программирование, программы, базы данных