Читаем C++17 STL Стандартная библиотека шаблонов полностью

Переменные z и c являются комплексными числами. Множество Мандельброта содержит все значения c, для которых формула сходится, если они применяются достаточно часто (рис. 6.7). Одни значения сходятся раньше, другие — позже, так что их можно раскрасить разными цветами. Некоторые из них не сходятся вообще — они отмечены черным.

В STL предусмотрен полезный класс std::complex. Попробуем реализовать эту формулу, не используя явные циклы, только ради того, чтобы получше узнать STL.


Как это делается

В этом примере мы выведем на консоль такое же изображение, которое было показано на рис. 6.7, в формате ASCII.


1. Сначала включим все заголовочные файлы и объявим об использовании пространства имен std:


#include

#include

#include

#include

#include

#include


using namespace std;


2. Множество Мандельброта и формула работают с комплексными числами. Поэтому определим псевдоним типа cmplx так, что он имеет типаж std::complex, специализированный для значений типа double:


using cmplx = complex;


3. Вы можете скомпоновать весь код для отрисовки изображения для множества Мандельброта с помощью ASCII примерно за 20 строк кода, но мы реализуем каждый логический шаг отдельно, а затем соберем все воедино. Первый шаг — реализация функции, которая переводит координаты из целых чисел в числа с плавающей точкой. Изначально мы имеем столбцы и строки для всех позиций символов на консоли. Нужно получить координаты с типом complex для системы координат множества Мандельброта. Для этого реализуем функцию, которая принимает параметры, описывающие геометрию системы координат пользовательского окна, а также систему, к которой нужно их привести. Эти значения служат для построения лямбда-выражения, которое будет возвращено позднее. Лямбда-выражение принимает координату int и возвращает координату double.


static auto scaler(int min_from, int max_from,

                   double min_to, double max_to)

{

  const int w_from {max_from - min_from};

  const double w_to {max_to - min_to};

  const int mid_from {(max_from - min_from) / 2 + min_from};

  const double mid_to {(max_to - min_to) / 2.0 + min_to};

  return [=] (int from) {

    return double(from - mid_from) / w_from * w_to + mid_to;

  };

}


4. Теперь можно преобразовать точки в одном измерении, но множество Мандельброта существует в двумерной системе координат. Чтобы выполнить преобразование из одной системы координат (x, y) в другую, объединим scaler_x и scaler_y, а также создадим экземпляр типа cmplx на основе их выходных данных.


template

static auto scaled_cmplx(A scaler_x, B scaler_y)

{

  return [=](int x, int y) {

    return cmplx{scaler_x(x), scaler_y(y)};

  };

}


5. После получения возможности преобразовывать координаты в правильные измерения можно реализовать множество Мандельброта. Функция, которую мы реализуем, сейчас ничего не знает о концепции консольных окон или линейного тангенциального преобразования, поэтому можно сконцентрироваться на математике, описывающей множество Мандельброта. Возводим в квадрат значение z и добавляем к нему значение c в цикле до тех пор, пока его значение по модулю меньше 2. Для некоторых координат это не происходит никогда, так что прерываем цикл, если будет превышено максимальное количество итераций max_iterations. В конечном счете мы вернем количество итераций, которое успели выполнить до того, как сойдется значение по модулю.


static auto mandelbrot_iterations(cmplx c)

{

  cmplx z {};

  size_t iterations {0};

  const size_t max_iterations {1000};

  while (abs(z) < 2 && iterations < max_iterations) {

    ++iterations;

    z = pow(z, 2) + c;

  }

  return iterations;

}


6. Теперь можно начать с функции main, где определим измерения консоли и создадим объект функции scale, который будет масштабировать значения наших координат для обеих осей:


int main()

{

  const size_t w {100};

  const size_t h {40};

  auto scale (scaled_cmplx(

    scaler(0, w, -2.0, 1.0),

    scaler(0, h, -1.0, 1.0)

  ));


Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Язык программирования Euphoria. Справочное руководство
Язык программирования Euphoria. Справочное руководство

Euphoria (юфо'ри, также рус. эйфори'я, ра'дость) — язык программирования, созданный Робертом Крейгом (Rapid Deployment Software) в Канаде, Торонто. Название Euphoria — это акроним для «End-User Programming with Hierarchical Objects for Robust Interpreted Applications».Euphoria — интерпретируемый императивный язык высокого уровня общего назначения. C помощью транслятора из исходного кода на Euphoria может быть сгенерирован исходный код на языке Си, который в свою очередь может быть скомпилирован в исполнияемый файл или динамическую библиотеку при помощи таких компиляторов, как GCC, OpenWatcom и др. Программа Euphoria также может быть «связана» с интерпретатором для получения самостоятельного исполняемого файла. Поддерживается несколько GUI-библиотек, включая Win32lib и оберток для wxWidgets, GTK+ и IUP. Euphoria имеет встроенную простую систему баз данных и обертки для работы с другими типам баз данных.[Материал из Википедии]

Коллектив авторов

Программирование, программы, базы данных