Читаем C++17 STL Стандартная библиотека шаблонов полностью

Мы получим точно такой же результат, что и в случае с циклом. Это, вероятно, пример ситуации, когда строгое следование алгоритмам STL не приводит к повышению качества кода. Тем не менее данная реализация алгоритма не знает о выбранной структуре данных. Она также будет работать со списками (однако в нашем случае это не будет иметь особого смысла). Еще одним преимуществом является тот факт, что алгоритмы C++17 STL легко распараллелить (данный вопрос мы рассмотрим в другой главе книги). А вот обычные циклы нужно реструктурировать, чтобы включить поддержку многопроцессорного режима (если только мы не используем внешние библиотеки наподобие OpenMP, в них циклы реструктурируются за нас).

Еще одна сложная часть — генерация сигналов. Еще раз взглянем на gen_cosine:


static auto gen_cosine (size_t period_len)

{

  return [period_len, n{0}] () mutable {

    return cos(double(n++) * 2.0 * M_PI / period_len);

  };

}


Каждый экземпляр лямбда-выражения представляет собой объект функции, который изменяет свое состояние при каждом вызове. Его состояние описывается переменными period_len и n. Последняя изменяется с каждым вызовом. Сигнал имеет различные значения в разные моменты времени, выражение n++ описывает увеличивающиеся моменты времени. Чтобы получить сам вектор сигнала из выражения, мы создали вспомогательную функцию signal_from_generator:


template

static auto signal_from_generator(size_t len, F gen)

{

  csignal r (len);

  generate(begin(r), end(r), gen);

  return r;

}


Эта вспомогательная функция выделяет память для вектора сигнала с заданной длиной и вызывает метод std::generate, что позволяет заполнить точки его графика. Для каждого элемента вектора r он один раз вызывает объект функции gen, который представляет собой самоизменяющийся объект функции; его можно создать с помощью gen_cosine.


  К сожалению, способ решения задачи с помощью STL не позволяет сделать код более элегантным. Ситуация может измениться, если библиотека ranges будет включена в клуб STL (надо надеяться, что это случится в C++20). 

Определяем ошибку суммы двух векторов

Существует несколько способов определения численной ошибки между целевым и реальным значениями. Измерение разницы между сигналами, состоящими из множества точек графика, обычно подразумевает использование циклов и вычитание соответствующих точек графика и т.д.

Существует простая формула для определения этой ошибки между сигналами a и b (рис. 6.5).

Для каждого значения i мы вычисляем a[i]–b[i], возводим разность в квадрат (таким образом, получаем возможность сравнить положительные и отрицательные значения) и, наконец, складываем эти значения. Опять же мы могли бы просто воспользоваться циклом, но ради интереса сделаем это с помощью алгоритма STL. Плюс данного подхода заключается в том, что мы не зависим от структуры данных. Наш алгоритм будет работать для векторов и для спископодобных структур данных, для которых нельзя выполнить прямое индексирование.


Как это делается

В этом примере мы создадим два сигнала и посчитаем для них ошибку суммы.


1. Как и обычно, сначала приводим выражения include. Затем объявляем об использовании пространства имен std:


#include

#include

#include

#include

#include

#include


using namespace std;


2. Определим ошибку суммы двух сигналов. Таковыми выступят синусоидальная волна и ее копия, только оригинал будет сохранен в векторе, содержащем переменные типа double, а копия — в векторе, включающем переменные типа int. Поскольку копирование значения из переменной типа double в переменную типа int приводит к потере той его части, что стоит после десятичной точки, мы потеряем какие-то данные. Назовем содержащий переменные типа double вектор as, что расшифровывается как analog signal (аналоговый сигнал), а вектор, который содержит значения типа int, — ds, что значит digital signal (цифровой сигнал). Ошибка суммы позднее покажет, насколько велики потери данных.


int main()

{

  const size_t sig_len {100};

  vector as (sig_len); // a для аналогового сигнала

  vector ds (sig_len);    // d для цифрового сигнала


Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Язык программирования Euphoria. Справочное руководство
Язык программирования Euphoria. Справочное руководство

Euphoria (юфо'ри, также рус. эйфори'я, ра'дость) — язык программирования, созданный Робертом Крейгом (Rapid Deployment Software) в Канаде, Торонто. Название Euphoria — это акроним для «End-User Programming with Hierarchical Objects for Robust Interpreted Applications».Euphoria — интерпретируемый императивный язык высокого уровня общего назначения. C помощью транслятора из исходного кода на Euphoria может быть сгенерирован исходный код на языке Си, который в свою очередь может быть скомпилирован в исполнияемый файл или динамическую библиотеку при помощи таких компиляторов, как GCC, OpenWatcom и др. Программа Euphoria также может быть «связана» с интерпретатором для получения самостоятельного исполняемого файла. Поддерживается несколько GUI-библиотек, включая Win32lib и оберток для wxWidgets, GTK+ и IUP. Euphoria имеет встроенную простую систему баз данных и обертки для работы с другими типам баз данных.[Материал из Википедии]

Коллектив авторов

Программирование, программы, базы данных