Однако математики не теряли присутствия духа и продолжали работать над топологией из-за ее центральной роли в развитом математическом мышлении. Компьютеры становились все более мощными, и математики начали искать способы электронного воплощения топологических концепций, которое позволило бы исследовать очень сложные формы. Но, чтобы компьютеры получили возможность производить нужные вычисления, исследователям пришлось изменить подход к вопросу. Результат, известный как «постоянная гомология», – это цифровой метод поиска отверстий.
На первый взгляд, задача распознавания отверстий кажется очень далекой от реального мира. Но топология оказывается идеальным средством для решения некоторых задач, связанных с сетями датчиков охранной сигнализации. Представьте себе секретное правительственное учреждение, окруженное лесом и неизменно привлекающее к себе внимание террористов и воров. Чтобы вовремя заметить их приближение, вы размещаете в лесу датчики движения. Как эффективнее всего это сделать и как убедиться, что в кордоне нет дыр, через которые плохие парни смогут пройти незамеченными?
Дыры? То есть отверстия? Конечно! Зовите тополога.
Когда вы впервые знакомитесь с топологией, вам обычно рассказывают о базовых формах. Они кажутся очень простыми и странными маленькими игрушками. Одни из них причудливы, другие откровенно жутковаты. Но эти причуды имеют смысл. Как однажды сказал великий математик Гильберт, «искусство математики состоит в нахождении того частного случая, который содержит все зародыши общности». Стоит выбрать правильную игрушку, и перед вами откроются совершенно неизведанные области.
Первые две игрушки на рисунке можно сделать, взяв полоску бумаги и соединив ее концы. Очевидный способ сделать это дает нам цилиндрическую полоску. Менее очевидный состоит в предварительном перекручивании одного конца на 180°. Это лента Мёбиуса, названная в честь Августа Мёбиуса, наткнувшегося на такую забавную штуку в 1858 году, хотя еще до этого ее заметил ученик Гаусса Иоганн Листинг. Именно Листинг в 1847 году первым пустил в оборот название «топология», но прозорливо подталкивал его к этому зарождающемуся предмету с самого начала не кто иной, как Гаусс.
У цилиндра имеются два края, каждый из которых представляет собой окружность, и две стороны, или поверхности. Можно раскрасить цилиндр внутри в красный цвет, а снаружи в синий, и эти два цвета нигде не встретятся. В топологии значение имеют те свойства фигур, которые сохраняются при непрерывной деформации фигуры. Вы можете растягивать ее части, сжимать их или скручивать, но не имеете права разрезать или рвать – разве что позже соедините все как было. Одинаковая всюду ширина цилиндрической ленты на рисунке не является ее топологическим свойством: ширину можно изменить путем непрерывной деформации. Округлость краев тоже не топологическое свойство, по аналогичным причинам. Но само наличие двух краев и двух сторон – топологические свойства.
Фигуры, которые считаются идентичными при деформации, имеют особое название: мы называем их топологическими пространствами. Настоящее определение звучит в высшей степени абстрактно и заумно, так что я буду пользоваться более неформальными изобразительными средствами. Однако все, что я говорю, может быть сформулировано точно и надлежащим образом доказано.
Мы можем использовать эти топологические свойства для доказательства того, что цилиндр невозможно непрерывной деформацией превратить в ленту Мёбиуса. Хотя то и другое получается в результате склеивания концов бумажной полоски, это разные топологические пространства. Причина в том, что у ленты Мёбиуса всего один край и одна сторона. Если провести по краю бумажной ленты пальцем, то палец сделает два оборота, прежде чем вернется в исходную точку. При этом он благодаря перекручиванию на 180° перейдет сверху вниз и обратно. Если вы начнете закрашивать поверхность красной краской, то сделаете полный оборот и обнаружите, что закрашиваете оборот той части бумаги, которую уже окрасили, опять же благодаря перекручиванию на 180°. Так что лента Мёбиуса имеет другие топологические свойства по сравнению с цилиндром.