Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Центральный вопрос топологии звучит так: «Какая это фигура?» То есть «Какое топологическое пространство мы здесь видим?» Вопрос может показаться банальным, но математика представляет нам топологические пространства самыми разными способами – в виде картинок, формул, решений уравнений, поэтому не всегда понятно, что мы получаем. Например, только тополог способен разглядеть бутылку Клейна в слое V1 мозга макаки. Мы замахнулись на решение этой задачи, когда заметили, что четыре пространства на моем рисунке – цилиндр, лента Мёбиуса, тор и бутылка Клейна – различаются топологическими свойствами. Ближе к концу XIX века и в начале XX века математики разработали систематические подходы к этому вопросу. Ключевая идея состоит в том, чтобы определить топологические инварианты – свойства, которые можно вычислить и которые одинаковы у топологически эквивалентных пространств, но различны по крайней мере у некоторых неэквивалентных пространств. Обычно этого недостаточно, чтобы различать все неэквивалентные пространства, но даже частичная классификация полезна. Если у двух пространств различается какой-то из инвариантов, то эти пространства определенно имеют различную топологию. При рассмотрении четырех фигур, о которых мы говорили, инвариантами являются такие аспекты, как «сколько краев?» и «сколько сторон?».

За прошедшие десятилетия выяснилось, что одни инварианты полезнее других, и было построено несколько инвариантов, имеющих фундаментальное значение. Тот, о котором я хочу сейчас рассказать (отчасти потому, что в последнее время у него появились серьезные сферы применения), называется гомологией. По существу, он подсчитывает, сколько отверстий заданной размерности имеет пространство. Мало того, он не просто подсчитывает: он соединяет отверстия и неотверстия в единый алгебраический объект, называемый группой гомологий.

Есть одно базовое топологическое пространство, которое я до сих пор не упоминал: сфера. Как и в случае с тором, когда математики произносят это слово, они подразумевают бесконечно тонкую поверхность, а не заполненную сферу (которую называют шаром). У сферы нет краев, как у тора и бутылки Клейна. Мы можем показать, что она топологически отличается и от тора, и от бутылки Клейна, если посмотрим на отверстия или их отсутствие.

Начнем с тора. С первого взгляда очевидно, что у тора прямо в середине есть огромное и очень заметное отверстие. Сферы выглядят совершенно иначе. Но как определить отверстие математически, так, чтобы определение не зависело от окружающего пространства? Ответ в том, что смотреть надо на замкнутые кривые на поверхности. Любая замкнутая поверхность на сфере образует границу области, которая с топологической точки зрения представляет собой диск – внутренность окружности{68}. Доказательство этого довольно заковыристо, поэтому будем просто считать, что так оно и есть. На торе некоторые замкнутые кривые также ограничивают диски, но некоторые нет. Мало того, любая замкнутая кривая, проходящая «сквозь» отверстие, не может ограничивать диск. Доказать это тоже довольно непросто, но мы опять смиримся с судьбой и будем считать, что все в порядке. Таким образом, мы показали, что сфера топологически отличается от тора, потому что «замкнутая кривая» и «ограничивает (топологический) диск» – это топологические свойства.


Слева: на торе некоторые замкнутые кривые являются границами, а некоторые нет. Справа: на сфере все замкнутые кривые являются границами


В эту игру можно играть и при более высоких размерностях. Например, в трех измерениях можно заменить «замкнутую кривую» на «(топологически) сферическую поверхность», а «ограничивает диск» на «ограничивает шар». Если вы сумеете найти сферу, которая не ограничивает шар, это будет означать, что в пространстве имеется трехмерное отверстие. Если вы хотите пойти дальше и определить это отверстие, то знайте, что еще первые топологи обнаружили возможность складывать и вычитать замкнутые кривые, или сферы. Я расскажу, как это происходит с кривыми на поверхностях, для более высоких размерностей все аналогично, но более хлопотно.


Цикл на торе


По существу, вы складываете две замкнутые кривые, когда рисуете их на одной поверхности. Чтобы сложить целое множество кривых, следует нарисовать их все. Существуют, правда, технические тонкости: часто полезно бывает рисовать вдоль кривой стрелочку, обозначая ее ориентацию, а одну и ту же кривую можно рисовать много раз и даже отрицательное число раз. Это почти то же самое, что рисовать обратную ей кривую (та же кривая, противоположная ориентация) положительное число раз, в смысле, который я скоро объясню.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг