Одна из наиболее перспективных концепций прикладной топологии возникла, когда специалисты по чистой математике пытались написать алгоритмы, которые позволили бы компьютеру вычислять группы гомологий. Им удалось это сделать, переписав определение группы гомологий так, чтобы оно больше подходило для компьютерных вычислений. Впоследствии эти идеи оказались эффективным новым методом анализа «больших данных». При этом чрезвычайно модном подходе ко всем областям науки компьютеры используются для поиска скрытых закономерностей в численных данных. Как явствует из названия, он работает лучше всего с очень большими объемами данных. К счастью, современные датчики и электроника чрезвычайно хорошо умеют измерять, хранить и манипулировать гигантскими объемами данных. К несчастью, мы часто понятия не имеем, что делать с этими данными после того, как собрали их, но именно здесь и кроются математические загадки больших данных.
Предположим, вы наизмеряли миллионы чисел и принципиально представляете их как своего рода облако точек в многомерном пространстве переменных. Чтобы извлечь из этого облака данных осмысленные закономерности, необходимо найти выраженные структурные особенности. Первостепенна среди них
Невозможно разобраться в топологии миллиона точек данных вручную: необходимо использовать компьютер. Но компьютеры сконструированы не для того, чтобы анализировать топологию. Так что методы, которые специалисты по чистой математике разрабатывали для компьютерных расчетов групп гомологий, были перенесены в область больших данных. И, как всегда, в готовом виде они не делали работу полностью. Их нужно было адаптировать к новым требованиям больших данных, главное из которых – то, что форма облака данных не является четко определенной. Она зависит, в частности, от масштаба, в котором вы рассматриваете облако.
Представьте, например, шланг, уложенный в бухту. При взгляде с умеренного расстояния сегмент шланга похож на кривую, которая топологически есть одномерный объект. Вблизи он похож на длинную цилиндрическую поверхность. Еще ближе поверхность обретает толщину, более того, вдоль середины цилиндра проходит отверстие. Если отойти и посмотреть издалека, но под широким углом, шланг окажется свернутым как сжатая пружина. А стоит расфокусировать зрение, бухта расплывется в… тор.
Подобного рода эффект означает, что форма облака данных – не постоянное понятие. Так что группа гомологий тоже не такая уж замечательная идея. Вместо этого математики задаются вопросом о том, как
Соединение точек данных, разделенных различными расстояниями, создает ряд триангуляций и вскрывает отверстия разных размеров. Постоянная гомология распознает эти эффекты
Начиная с облака и выбранной мерки длины, вы можете создать то, что топологи называют симплексным комплексом. Для этого следует соединить точки попарно ребрами везде, где они оказываются ближе друг к другу, чем предписывает выбранная мерка. Тогда ребра, которые находятся близко друг к другу, окружают треугольники, а треугольники, которые находятся близко друг к другу, окружают тетраэдры и т. д. Многомерный тетраэдр называется симплексом, а набор симплексов, объединенных определенным образом, есть симплексный комплекс. Для нас подойдет и более простое его название «триангуляция». Помните только, что треугольники могут быть любой размерности.
Если у вас есть триангуляция, существуют математические правила вычисления гомологии. Но ведь триангуляция зависит от масштаба наблюдения. Так что и гомология тоже от него зависит. Наш интересный вопрос о форме тогда приобретает вид: как меняется гомология триангуляции с изменением масштаба? Важнейшие особенности формы должны быть менее подвержены изменениям, нежели более неустойчивые черты, которые чувствительны к масштабу. Так что мы можем сосредоточиться на тех аспектах группы гомологий, которые