Читаем Физика пространства - времени полностью

Но от 𝑂 до 𝐵 можно пройти и по совершенно другому пути, например по прямой 𝑂𝐵 (рис. 19а). Этот новый путь, очевидно, обладает другой длиной, чем старый. Такое различие в длинах разных путей между 𝑂 и 𝐵 — настолько общеизвестный факт в эвклидовой геометрии, что не требует никаких комментариев и уж, конечно, не вызывает удивления. В эвклидовой геометрии путь по кривой между заданными двумя точками длиннее, чем прямолинейный путь между этими же двумя точками. Различие же длин для разных путей не приводит ни к каким противоречиям, и никто не станет заявлять, будто измерительная рулетка даёт неверный результат, если её протянуть в соответствии с кривизной пути.

Прямой путь обладает наименьшей длиной

Собственное время играет ту же роль для мировой линии в лоренцевой геометрии, какую играла длина для пути в эвклидовой геометрии. Пусть началом мировой линии служит событие 𝑂 а концом — событие 𝐵. Существует бесконечное множество разных мировых линий, соединяющих события 𝑂 и 𝐵. Соответствующий каждой из них промежуток собственного времени определён вполне однозначно, но различен для разных мировых линий. Удивительно ли это? Если да, то следует подробнее рассмотреть определение собственного времени и методику его измерения.

Протяжённость мировой линии измеряется собственным временем

Рассмотрим частицу, движущуюся от 𝑂 к 𝐵 по искривлённой мировой линии (рис. 19б) 1). В этом случае частица движется реально вдоль оси 𝑥 с переменной скоростью. Пусть эта частица посылает световой сигнал через каждый метр времени по часам, движущимся вместе с частицей. Собственное время Δτ, прошедшее между каждыми двумя последовательными вспышками (например, обозначенными на рисунке через 3 и 4), можно вычислить, исходя из разностей координат Δ𝑥 и Δ𝑡 этих событий, измеренных в некоторой инерциальной системе отсчёта. Ввиду инвариантности этого интервала промежуток собственного времени между двумя данными событиями будет одним и тем же, в какой бы инерциальной системе отсчёта мы его ни вычисляли, хотя сами разности пространственных и временных координат Δ𝑥 и Δ𝑡 будут различны в разных системах отсчёта. Интервалы между всеми другими парами последовательных событий-вспышек на этой мировой линии не будут зависеть от выбранной для вычисления величины интервала системы отсчёта. Значит, это заключение справедливо и в отношении суммы интервалов собственного времени между всеми событиями-вспышками на данной мировой линии! Итак, разные наблюдатели в различных инерциальных системах отсчёта найдут, что промежуток собственного времени между определённым начальным событием 𝑂 и определённым конечным событием 𝐵 вдоль данной мировой линии для всех них одинаков.

1) Конечно, движения вдоль мировой линии реально не происходит, как это и подчеркивается в следующей фразе. Авторы очень удачно охарактеризовали ранее мировые линии на диаграммах Минковского как изображение функциональной зависимости пространственной координаты 𝑥 материального объекта от времени. Поэтому читатель, встречая употребляемое для краткости выражение «движение по мировой линии», должен сопротивляться искушению понимать его буквально.— Прим. перев.


Прямая мировая линия соответствует наибольшему промежутку собственного времени

Но от события 𝑂 до события 𝐵 можно «пройти» и по совершенно другой мировой линии, например по прямой 𝑂𝐵 (рис. 19б). Этой новой мировой линии, очевидно, соответствует другой промежуток собственного времени, чем старой мировой линии. В лоренцевой геометрии искривлённая мировая линия между двумя заданными событиями короче, чем прямая мировая линия между теми же двумя событиями,— короче в смысле соответствующего ей промежутка собственного времени (рис. 20). Расстояние между двумя соседними точками по кривому пути всегда равно или больше разности координат 𝑦 этих точек. Напротив, промежуток собственного времени между двумя соседними событиями по кривой мировой линии всегда равен или меньше соответствующего времени по прямой мировой линии. Фундаментальным способом сравнения различных мировых линий между двумя событиями является определение собственного времени.

а) В эвклидовой геометрии.

б) В лоренцевой геометрии.

Рис. 20. Противоположность между геометриями Эвклида и Лоренца. В лоренцевой геометрии искривлённая мировая линия соответствует движению за меньшее собственное время.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука