Читаем Фрактальная геометрия природы полностью

НЕСТАЦИОНАРНЫЕ ПРИРАЩЕНИЯ

Не будем, однако, радоваться слишком бурно. Функция B*H(t) является статистически самоподобной относительно отношений приведения иного, нежели 2−k, вида только в пеано – броуновском случае (D=2), когда она сводится к B(t).

Более серьезная проблема возникает тогда, когда интервал [t',t"] не является двоичным, хотя и имеет ту же длину Δt=2−k - например, если t'=(h−0,5)2−k и t''=(h+0,5)2−k. На таких интервалах приращение ΔB*H имеет иную и меньшую дисперсию, зависимую от k. Нижняя граница этой дисперсии выглядит как 21−2HΔt2H. Более того, если известна величина Δt, а время t не известно, то распределение соответствующего приращения ΔB*H не является гауссовым, но представляет собой случайную смесь различных гауссовых распределений.

В результате складки, возникающие в двойных точках аппроксимирующего терагона, остаются и в предельной кривой. При размерности D чуть меньше 2 (т.е. при H чуть больше ½) складки довольно незначительны. Однако когда значение H приближается к 1 (в главе 28 мы увидим, что при моделировании рельефа поверхности Земли нам приходится иметь дело с H~0,8÷0,9), складки становятся очень заметными – их можно увидеть и на выборочных функциях. Единственным способом избежать их оказывается отказ от рекурсивной схемы срединного смещения, что мы и сделаем в следующем разделе и в главе 27.

СЛУЧАЙНО РАЗМЕЩЕННЫЕ СЛОИ

Для того чтобы установить причину нестационарности кривых и поверхностей срединного смещения, рассмотрим координатную функцию X(t) некоторой кривой B*H(t). На каждом этапе построения мы получаем некоторую ломаную функцию ΔkX(t)=Xk(t)−Xk−1(t), нуль – множество которой, во-первых, периодично с периодом 2−k и, во-вторых, включает в себя нуль – множество функции Δk−1X(t). То есть можно сказать, что каждая такая ломаная функция находится в синхронии со всеми последующими.

Из-за того, что нуль - множества периодичны и синхронны («иерархичны»), приращения не могут быть стационарными. И наоборот, стационарности можно достичь путем устранения этих свойств.

Один из подходов состоит в построении ломаной функции ΔBkf(t) следующим образом. Выберем пуассоновскую последовательность моментов времени tn(k) со средним числом точек на единицу времени, равным 2k, затем положим, что функция принимает независимые и одинаково распределенные случайные значения, и, наконец, произведем линейную интерполяцию между моментами времени tn(k). Бесконечная сумма BHf(t) таких вкладов представляет собой некую стационарную случайную функцию, впервые описанную в докторской диссертации гидролога О. Дитлефсена (1969). (См. также [424] и [370].)

Оглянувшись назад, мы видим, что такое обобщение вовсе не требует, чтобы среднее число нулей было равно 2k. Оно может иметь вид bk, где b - любая вещественная база, большая 1.

Допустимые отношения приведения соответствующего фрактала задаются дискретной последовательностью r=b−k. По мере того, как b→1, эта последовательность становится все более плотной, - в сущности, асимптотически непрерывной. Таким образом, функция BHf(t) становится как нельзя более приемлемой для тех, кому нужны стационарность и широкий выбор коэффициентов подобия. Однако при этом она, к сожалению, теряет свою специфичность. Из рассуждений в [370] явствует, что функция BHf(t) сходится к случайной функции BH(t), которую мы рассмотрим в следующей главе.

Рис. 345. В роли художника – ошибка в программе, опус 1


Авторство этой иллюстрации можно частично приписать ошибочному программированию. Ошибку вовремя распознали и исправили (после сохранения результата, разумеется!); конечным результатом вы можете полюбоваться на рис. 424 – 427.

Изменения, явившиеся результатом пустяковой ошибки в критическом месте, далеко превзошли наши наихудшие опасения.

Очевидно, что по замыслу в «правильных» иллюстрациях должен был наличествовать весьма строгий порядок. Здесь этот порядок оказался нарушен, причем никакого другого порядка также не наблюдается.

То, что эта иллюстрация – по крайней мере, на первый взгляд, - вполне может сойти за произведение высокого искусства, явно не случайно. Свои соображения на этот счет я вкратце высказал в [399] и намерен изложить их в полном виде в самом ближайшем будущем.

IX ДРОБНЫЕ БРОУНОВСКИЕ ФРАКТАЛЫ

27 СТОКИ РЕК. МАСШТАБНО-ИНВАРИАНТНЫЕ СЕТИ И ШУМЫ

Переход к дробным броуновским фракталам знаменует собой один из важнейших поворотных пунктов настоящего эссе. До сих пор мы придерживались фракталов, связанных с временными и/или/ пространственными решетками, которые налагали определенные ограничения на свойства инвариантности фракталов, т.е. на допустимые преобразования сдвига и подобия, отображающие данный фрактал на себя.


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература