Мы говорим, что точка
Если решетка состоит из точек плоскости, координаты которых – целые числа, то величины
Рис. 338 Выборочное случайное блуждание как приближение броуновской функции из прямой в прямую (размерность
Самая долгая (и самая простая!) из всех азартных игр началась приблизительно в 1700 г., когда в теории вероятности еще заправляла семья Бернулли. Если наша неизменно симметричная монета падает орлом вверх, то пенни выигрывает Генри, если же выпадает решка, пенни достается Томасу. (На самом деле их звали Петер и Пауль, но я так и не смог запомнить, который из них ставил на орла.)
Некоторое время назад понаблюдать за игрой заходил Уильям Феллер; результаты своих наблюдений он обобщил в виде графика зависимости совокупного выигрыша Генри от количества бросков монеты, каковой график вы можете видеть на рисунке вверху. (Воспроизводится по книге Феллера «Введение в теорию вероятности и ее приложения» (т.1) с любезного разрешения ее издателей, компании J, Wiley & Sons © 1950.)
Средний и нижний рисунки представляют совокупный выигрыш Генри за более продолжительную игру; данные снимаются через каждые 20 бросков.
Увеличивая длину наборов данных и уменьшая длину шага, асимптотически получаем выборку значений броуновской функции из прямой в прямую
На одной из своих лекций Феллер сообщил, что данные рисунки «нетипичны» и были выбраны среди нескольких других, графики на которых выглядели неправдоподобно разбросанно. Как бы то ни было, бесконечное (так мне казалось) созерцание этих графиков сыграло решающую роль в развитии двух теорий, включенных в настоящее эссе.
О графике в целом.
В [342] имеется высказывание в том смысле, что форма всего графика целиком напоминает силуэт горного массива или вертикальный разрез земной коры. Пройдя через несколько обобщений, это наблюдение привело, в конце концов, к нескольким моделям, описанным в главе 28.Нуль – множество графика.
Нуль – множество графика есть множество моментов, когда кошельки Генри и Томаса возвращаются к тому состоянию, в котором они пребывали в момент начала наблюдения. По способу построения графика временные интервалы между нулями взаимно независимы. Однако совершенно очевидно, что положения этих нулей независимыми назвать никак нельзя – они образуют весьма явственные скопления. Например, если рассматривать вторую кривую в том же масштабе, что и первую, то почти каждый нуль предстает в виде целого скопления точек. Имея дело с математическим броуновским движением, эти скопления можно подразделять иерархически до бесконечности.Когда ко мне обратились за помощью в построении модели распределения ошибок в телефонных линиях, я очень кстати вспомнил о графиках Феллера. Хотя было известно, что ошибки группируются в пакеты (в этом, собственно, и состояла практическая суть возникшей проблемы), я предположил, что интервалы между пакетами могут оказаться взаимно независимыми. Тщательное эмпирическое исследование подтвердило мое предположение и привело к созданию моделей, описанных в главах 8 и 31.
Броуновское нуль – множество образует простейшую пыль Леви, т.е. случайную канторову пыль с размерностью
Рис. 340 и 341. Броуновские оболочки / острова; Броуновское движение без самопересечений
Броуновская петля.
Под этим термином я подразумеваю след, покрываемый за некоторое конечное времяРис. 341. Броуновская оболочка.
Будучи (почти наверное) ограниченной, броуновская петля разбивает плоскость на две области: внешнюю, любая точка которой может быть соединена с некой отдаленной точкой без пересечения петли, и внутреннюю, которую я предлагаю называть броуновской оболочкой или броуновским островом.Рис. 340.
На этом рисунке представлена оболочка броуновского следа, не образующего петли.