Читаем Фрактальная геометрия природы полностью

Мы говорим, что точка P(t)={X(t),Y(t)}, вложенная в 2, совершает случайное блуждание, если в каждой из последовательных моментов времени, разделенных интервалом Δt, она перемещается на некоторое фиксированное расстояние |ΔP| в направлении, которое выбирается случайным образом из доступных в данной решетке.

Если решетка состоит из точек плоскости, координаты которых – целые числа, то величины (X+Y)/√2 и (X−Y)/√2 изменяются при каждом шаге на ±1. Говорят, что каждая из этих величин совершает случайное блуждание на прямой (см. рис. 338). В приблизительном масштабе, т.е. при малом Δt и ΔP=√Δt, случайное блуждание неотличимо от броуновского движения.

Рис. 338 Выборочное случайное блуждание как приближение броуновской функции из прямой в прямую (размерность D=3/2) и ее нуль – множества (размерность D=1/2)


Самая долгая (и самая простая!) из всех азартных игр началась приблизительно в 1700 г., когда в теории вероятности еще заправляла семья Бернулли. Если наша неизменно симметричная монета падает орлом вверх, то пенни выигрывает Генри, если же выпадает решка, пенни достается Томасу. (На самом деле их звали Петер и Пауль, но я так и не смог запомнить, который из них ставил на орла.)

Некоторое время назад понаблюдать за игрой заходил Уильям Феллер; результаты своих наблюдений он обобщил в виде графика зависимости совокупного выигрыша Генри от количества бросков монеты, каковой график вы можете видеть на рисунке вверху. (Воспроизводится по книге Феллера «Введение в теорию вероятности и ее приложения» (т.1) с любезного разрешения ее издателей, компании J, Wiley & Sons © 1950.)

Средний и нижний рисунки представляют совокупный выигрыш Генри за более продолжительную игру; данные снимаются через каждые 20 бросков.

Увеличивая длину наборов данных и уменьшая длину шага, асимптотически получаем выборку значений броуновской функции из прямой в прямую

На одной из своих лекций Феллер сообщил, что данные рисунки «нетипичны» и были выбраны среди нескольких других, графики на которых выглядели неправдоподобно разбросанно. Как бы то ни было, бесконечное (так мне казалось) созерцание этих графиков сыграло решающую роль в развитии двух теорий, включенных в настоящее эссе.

О графике в целом. В [342] имеется высказывание в том смысле, что форма всего графика целиком напоминает силуэт горного массива или вертикальный разрез земной коры. Пройдя через несколько обобщений, это наблюдение привело, в конце концов, к нескольким моделям, описанным в главе 28.

Нуль – множество графика. Нуль – множество графика есть множество моментов, когда кошельки Генри и Томаса возвращаются к тому состоянию, в котором они пребывали в момент начала наблюдения. По способу построения графика временные интервалы между нулями взаимно независимы. Однако совершенно очевидно, что положения этих нулей независимыми назвать никак нельзя – они образуют весьма явственные скопления. Например, если рассматривать вторую кривую в том же масштабе, что и первую, то почти каждый нуль предстает в виде целого скопления точек. Имея дело с математическим броуновским движением, эти скопления можно подразделять иерархически до бесконечности.

Когда ко мне обратились за помощью в построении модели распределения ошибок в телефонных линиях, я очень кстати вспомнил о графиках Феллера. Хотя было известно, что ошибки группируются в пакеты (в этом, собственно, и состояла практическая суть возникшей проблемы), я предположил, что интервалы между пакетами могут оказаться взаимно независимыми. Тщательное эмпирическое исследование подтвердило мое предположение и привело к созданию моделей, описанных в главах 8 и 31.

Броуновское нуль – множество образует простейшую пыль Леви, т.е. случайную канторову пыль с размерностью D=1/2. Таким же образом можно получить и пыль любой другой размерности D в интервале между 0 и 1, нужно только взять нули другой случайной функции. С помощью этой модели можно даже определить фрактальную размерность телефонного канала. Точность значений D зависит от точности измерения характеристик моделируемого функцией физического процесса.

Рис. 340 и 341. Броуновские оболочки / острова; Броуновское движение без самопересечений


Броуновская петля. Под этим термином я подразумеваю след, покрываемый за некоторое конечное время Δt плоским броуновским движением, возвращающимся к своей исходной точке. Этот след представляет собой случайную кривую Пеано, длина инициатора которой равна нулю.

Рис. 341. Броуновская оболочка. Будучи (почти наверное) ограниченной, броуновская петля разбивает плоскость на две области: внешнюю, любая точка которой может быть соединена с некой отдаленной точкой без пересечения петли, и внутреннюю, которую я предлагаю называть броуновской оболочкой или броуновским островом.

Рис. 340. На этом рисунке представлена оболочка броуновского следа, не образующего петли.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература