Читаем Фрактальная геометрия природы полностью

Комментарий. Я не знаю, проводил ли кто-нибудь исследование броуновских оболочек, но полагаю, что они заслуживают самого пристального внимания. Образцы, изображенные справа, являются результатом 200 000 броуновских шагов, каждый из которых построен на растре 1200×1200.

По способу построения броуновские оболочки, соответствующие различным значениям Δt, статистически тождественны, за исключением масштаба. И имеются все основания полагать, что мелкие детали границы оболочки асимптотически самоподобны (нет только конкретных доказательств). Граница не может быть масштабно-инвариантной в строгом смысле, так как петлю нельзя разделить на участки одинаковой структуры, однако малые подучастки подходят к масштабно - инвариантности весьма близко.

Броуновское движение без самопересечений. По причинам, подробно изложенным в главе 36, где мы рассмотрим случайное блуждание без самопересечений, я предлагаю для обозначения границы броуновской оболочки термин броуновское движение без самопересечений.

Размерность броуновского движения без самопересечений. Интерпретировав некоторые известные соотношения (они приведены в главе 36) в том смысле, что размерность случайного блуждания без самопересечений составляет 4/3, я предполагаю, что это верно и для броуновского движения без самопересечений.

Эмпирическая проверка этого предположения дает замечательную возможность проверить заодно и соотношение между длиной и площадью, полученное в главе 12. Плоскость покрывается квадратными решетками (с каждым разом все более частыми), а мы считаем количество квадратов со стороной G, пересекаемых а) оболочкой – получается G - площадь – и б) ее границей – получается G - длина. Графики зависимости G - длины от G - площади в двойном логарифмическом масштабе оказываются замечательно прямыми, причем их угловые коэффициенты практически совпадают с D/2=(4/3)/2=2/3.

Сходство между кривыми на рис. 341 и 325 – и между их размерностями – также заслуживает упоминания.

Замечание. Наибольшие открытые области на рис. 341, которую B(t) не посещает, показаны серым цветом. Их можно рассматривать как тремы, ограниченные фрактальными кривыми; следовательно, петля представляет собой сеть – в том смысле, который мы вкладывали в этот термин в главе 14.

Возникает вопрос: чем же является петля с точки зрения степени ветвления – салфеткой или ковром? Я предполагаю, что верно последнее, так как броуновские сети удовлетворяют свойству Уайберна, описанному на с. 201 (пока неопубликованной). Следовательно, броуновский след также можно считать универсальной кривой в смысле, определенном на с. 209.

ПРЯМЫЕ, «БЕЗРЕШЕТОЧНЫЕ», ОПРЕДЕЛЕНИЯ БРОУНОВСКОГО ДВИЖЕНИЯB(T)

Предыдущие определения броуновского движения основывались либо на временнóй решетке, либо и на временнóй, и на пространственной, однако в окончательном результате эти «подпорки» никак себя не проявляют. Я полагаю, что и при описании этого самого результата вполне возможно обойтись без них.

В прямом описании Башелье [12] постулируется, что на некоторой произвольной последовательности равных приращений времени Δt векторы смещения ΔB(t) независимы, изотропны и случайны с гауссовым распределением вероятности. Таким образом,

<ΔB(t)>=0 и <[ΔB(t)]2>=|Δt|.

Следовательно, среднеквадратическое значение ΔB равно √|Δt|. Это определение не зависит от системы координат, но проекция вектора смещения ΔB(t) на любую ось представляет собой гауссову скалярную случайную переменную с нулевым средним и дисперсией, равной ½|Δt|.

Определение, полюбившееся математикам, идет дальше и обходится без разделения времени на равные промежутки. Оно требует изотропии движений между любой парой моментов времени t и t0>t. Оно требует независимости движения от предыдущего положения точки. Наконец, оно требует, чтобы вектор из точки B(t) в точку B(t0), деленный на √|t0−t|, имел приведенную гауссову плотность распределения для всех t и t0.

ДРЕЙФ И ПЕРЕХОД КD=1

Движение коллоидной частицы в однородно текущей реке или электрона в медном проводнике можно представить как B(t)+δt. След этой функции неотличим от следа функции B(t) при t≪1/δ2 и от следа функции δt при t≫1/δ2. Таким образом, при tc∝1/δ2 и rc∝1/δ размерность следа понижается от D=2 к D=1. В терминологии критических феноменов величина δ символизирует расстояние от критической точки, а показатели в формулах для tc и rc представляют собой критические показатели.

АЛЬТЕРНАТИВНЫЕ СЛУЧАЙНЫЕ КРИВЫЕ ПЕАНО

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература