Читаем Фрактальная геометрия природы полностью

Поскольку практически настроенные ученые не склонны подвергать сомнению соотношение 2><∞, широко распространено мнение о том, что гауссово распределение является единственным устойчивым распределением. Это определенно не соответствует истине, о чем нам первым поведал Коши еще в 1853 г. (см. [71], с. 206). Коши приводит в пример некую случайную величину (впервые рассмотренную Пуассоном и называемую теперь «приведенной переменной Коши»), которая удовлетворяет следующему равенству

Pr(X>−x)=Pr(X−1tg−1x;

отсюда

плотность Коши=1/[π(1+x2)].

Коши показал, что эта случайная величина является решением системы уравнений, составленной из (L) и альтернативного вспомогательного соотношения

(A:1)s1+s2=s.

Для случайной величины Коши 2>=∞ или, точнее, =∞. То есть для выражения такой очевидной вещи, как равенство масштаба произведения случайной величины X на некоторое неслучайное число s произведению s на масштаб X, нам потребуется для измерения масштаба величина, отличная от среднеквадратического значения. Одним из кандидатов на эту роль является расстояние между квартилями Q и Q', где Pr(XQ)=¼.

Чаще всего случайная величина Коши используется в качестве контрпримера, как это сделано, например, в [33], с. 321 – 323. См. также [212].

Геометрическая порождающая модель. Вышеприведенную формулу Pr(X−1tg−1x можно реализовать геометрически, разместив точку W с равномерным распределением вероятностей на окружности u2+v2=1 и определив X как абсциссу точки, в которой прямая, проходящая через начало координат O и точку W, пересекает прямую v=1 . Случайная величина Y, определяемая в этом же построении как ордината точки, в которой прямая, проходящая через O и W, пересекает прямую u=1, имеет то же распределение, что и X. Поскольку Y=1/X, получается, что величина, обратная случайной величине Коши, также является случайной величиной Коши.

Более того: всякий раз, когда вектор OW=(X,Y) является изотропно распределенным случайным вектором в плоскости, величина Y/X является случайной величиной Коши. В частности, отношение двух независимых гауссовых случайных величин есть случайная величина Коши.

3. ВОЗВРАЩЕНИЕ БРОУНОВСКОГО ДВИЖЕНИЯ

Составим систему из уравнения (L) и вспомогательного соотношения

(A:0,5)s10,5+s20,5=s0,5.

Решением этой системы будет случайная величина, плотность которой при x<0 равна нулю, а в остальных случаях имеет вид

p(x)=(2π)−1/2exp(−1/2x)x−3/2.

Величина p(x)dx представляет собой вероятность того, что броуновская функция, удовлетворяющая равенству B(0)=0, удовлетворяет также равенству B(t)=0 при некотором значении t из интервала [x,x+dx].

4. ОБОБЩЕННЫЕ УСТОЙЧИВЫЕ ПО ЛЕВИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Коши рассмотрел обобщенное вспомогательное соотношение

(A:D)s1D+s2D=sD.

Симметричные решения. Основываясь на формальных расчетах, Коши утверждает, что система уравнений (L) и (A:D) имеет при любом значении D единственное решение: случайную величину, плотность которой имеет вид

π−20exp(u−D)cos uxdu.

Пойа и Леви показывают, что при 0 предположение Коши и в самом деле подтверждается, а гауссово распределение и распределение Коши являются частными случаями этого правила. Однако при D>2 это предположение оказывается несостоятельным, поскольку в этом случае вышеприведенная формальная плотность принимает отрицательные значения, что есть абсурд.

Крайние несимметричные решения. Леви, кроме того, показывает, что система уравнений (L) и (A:D) допускает и несимеетричные решения. В случае наиболее экстремально асимметричных решений порождающая функция (преобразование Лапласа) определена и равна exp(gD).

Другие несимметричные решения. Общим решением системы уравнений (L) и (A:D) является взвешенная разность двух независимых одинаково распределенных решений с крайней асимметрией. Веса принято обозначать через ½(1+β) и ½(1−β).

Окончательное обобщение уравнения(L). При неизменном (A:D) заменим условие (L) условием

(L*)s1X1+s2X2=sX+const.

При D≠1 такая замена ничего не меняет, однако при D=1 система допускает дополнительные решения, которые называются асимметричными случайными величинами Коши.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература