Читаем Фрактальная геометрия природы полностью

В стандартном случае n2><∞ ответ на этот вопрос будет стандартен и утвердителен: aN=1/√N, bN~n>√N, а предел является гауссовым.

Нестандартный случай n2>=∞ намного сложнее: а) выбор aN и bN не всегда возможен; б) когда выбор возможен, предел оказывается устойчивым негауссовым; в) для того, чтобы показатель предела был равен D, достаточно, чтобы последовательность Xn имела асимптотически гиперболическое распределение с показателем D (см. главу 38); г) необходимое и достаточное условие приводится в источниках, перечисленных в начале этого раздела.

8. УСТОЙЧИВЫЕ ПО ЛЕВИ ФУНКЦИИ ИЗ ПРЯМОЙ В ПРЯМУЮ

Эти функции представляет собой случайные функции со стационарными независимыми приращениями, причем величина приращений X(t)−X(0) является устойчивой по Леви случайной величиной. Масштабный коэффициент a(t), благодаря которому величина [X(t)−X(0)]a(t) остается независимой от t, должен иметь вид a(t)=t−1/D.

Этот процесс является обобщением обыкновенного броуновского движения на случай D≠2.

Наиболее поразительное свойство функции X(t) заключается в том, что она разрывна и содержит скачки.

СлучайD<1. В этом случае X(t) не содержит ничего, кроме скачков, причем количество скачков, происходящих за интервал от t до t+Δt и имеющих абсолютное значение, превышающее u, представляет собой распределенную по закону Пуассона случайную величину с математическим ожиданием |Δt|u−D.

Относительные количества положительных и отрицательных скачков равны, соответственно, ½(1+β) и ½(1−β). Крайний асимметричный случай β=1 допускает только положительные скачки; такая функция называется устойчивым субординатором и служит для определения лестниц Леви, изображенных на рис. 399 и 400.

Парадокс. Поскольку u−D→∞ при u→0, общее ожидаемое количество скачков бесконечно, какой бы малой ни была величина Δt. То обстоятельство, что связанная с этим ожиданием вероятность также окажется бесконечной, представляется парадоксальным. Однако парадоксальность исчезает, как только мы обращаем внимание на то, что общее количество скачков, для которых u<1, составляет конечную величину. Этот вывод выглядит вполне естественным, если отметить, что ожидаемая длина малого скачка конечна и пропорциональна

01Du−D−1udu=D01u−Ddu<∞.

Случай1. В этом случае вышеприведенный интеграл расходится, т.е. общий вклад малых скачков составляет бесконечную величину. Вследствие этого функция X(t) содержит два члена, непрерывный и скачковый; каждый из членов бесконечен, однако сумма их конечна.

9. УСТОЙЧИВЫЕ ПО ЛЕВИ ВЕКТОРЫ И ФУНКЦИИ

Заменим случайную величину X в функциональном уравнении (L), участвующем в определении устойчивости, случайным вектором X. Если задан некоторый единичный вектор V, то очевидно, что система уравнений (L) и (A:D) имеет элементарное решение – произведение вектора V на скалярную устойчивую случайную величину.

Леви [304] показывает, что общее решение есть просто сумма всех элементарных решений, каждое из которых соответствует своему направлению в пространстве и взвешено в соответствии с некоторым распределением по поверхности единичной сферы. Вклады этих решений могут быть дискретными (конечными или счетно бесконечными), либо бесконечно малыми. Для того, чтобы вектор X был изотропным, элементарные вклады должны быть распределены равномерно по всем направлениям.

Устойчивые по Леви векторные функции от времени. Подобно устойчивым скалярным функциям, векторные функции допускают разложение в сумму скачков, следующих гиперболическому распределению. Размеры и направления скачков определяются распределением по поверхности сферы.

Распределение Хольтсмарка. Спектроскопические исследования Хольтсмарка [220] пережили свое время благодаря тому, что их результаты оказалось возможным переформулировать в терминах ньютоновского притяжения (см. [76]); до появления моих работ только в этих исследованиях фигурировал конкретный пример устойчивого по Леви распределения. Предположим, что в точке O имеется некая звезда, а в пространстве распределено (независимо друг от друга и с ожидаемой плотностью δ) еще некоторое количество звезд единичной массы. Какова общая сила притяжения, испытываемая звездой O со стороны этих звезд? Вскоре после того, как Ньютон открыл свой знаменитый обратно - квадратичный закон притяжения, преподобный Бентли написал ему письмо, в котором указал на то, что притяжение звезд, заключенных внутри узкого конуса dΩ' с вершиной в точке O, имеет бесконечное математическое ожидание; то же можно сказать и о притяжении звезд, заключенных внутри узкого конуса dΩ'', симметричного конусу dΩ' относительно точки O. Бентли заключил, что разница между этими бесконечностями не определена.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература