Обратим внимание на биоморфный характер физических объектов, упоминаемых Аристотелем в плане их сопоставления с математическими. Характерно, что и в других сочинениях, например в «Метафизике», сопоставляя физику и математику и используя в качестве показательного примера «курносость», Аристотель приводит в качестве типично
Говоря о том, что математические предметы характеризуются абстракцией от материи, необходимо выяснить, какая именно материя имеется в виду. Прежде всего обратим внимание на универсальность категории материи и на ее конкретность: в любой предметной области для вещей каждого рода есть своя материя. Это понятие чрезвычайно гибко и богато, чем и гарантируется его универсальность. Действительно, Аристотель считает, что математические предметы наделены особой материей. Например, он задает вопрос, какая же из наук «должна исследовать материю математических предметов»? (Метафизика, II, 1, 1059b 15–16). Математические предметы – это числа, тела, плоскости, точки (Метафизика, III, 5, 1001b 26), это также «нечетное и четное, прямая линия и кривая (Физика, II, 2, 194а 1–2). Полной абстракции от матери в математике не происходит: происходит лишь абстракция от чувственной материи (ὓλη αἰσϑητή) или, как один раз ее называет Аристотель, от физической материи[53]
(φυσική ὓλη) (О душе I, 1, 403b 17–18). Этой материи, которая, впрочем, также разнообразна внутри себя, Аристотель противопоставляет умопостигаемую материю (ὓλη νοητή). «Умопостигаемым, – говорит Аристотель, – я называю, например, круги математические, чувственно воспринимаемые, например – медные или деревянные» (Метафизика, I, 10, 1036а 3–5).Характерной особенностью чувственно воспринимаемой материи является движение, именно этим – помимо доступности для чувственного восприятия – она отличается от умопостигаемой материи. «Есть, – говорит Аристотель, – с одной стороны, материя, воспринимаемая чувствами, а с другой – постигаемая умом, воспринимаемая чувствами, как, например, медь, дерево или
Понятие умопостигаемой материи у Аристотеля, однако, шире понятия материи математических предметов. Помимо обозначения материи математических предметов, «умопостигаемая материя» употребляется Аристотелем как обозначение рода в дефинициях вообще, как материя логических определений. «Одна материя умопостигаема, – говорит Аристотель, – другая – чувственно воспринимаема, и одно в определении всегда есть материя, другое – осуществленность, например: круг есть плоская фигура» (Метафизика, VIII, 6, 1045а 33–35). Род плоских фигур является в плане определения круга его умопостигаемой материей. И такое понятие умопостигаемой материи, очевидно, отлично от ее первого значения, как «математической» материи, т. е. субстрата математических предметов, в частности, круга. Этот субстрат для геометрических фигур есть протяженность или непрерывное (Метафизика, XI, 3, 1061а 35).