Когда я вижу нечто прекрасное, мое первое ощущение всегда окрашено скорбью, поскольку я знаю, что никогда больше не испытаю к этому предмету столь же сильного чувства. Когда я вижу нечто красивенькое, у меня не спирает дыхание, как бывает при первом взгляде на красоту. Впоследствии, когда вы снова видите красивенькую вещь, вы испытываете практически те же приятные чувства. Но вы не ощущаете скорби, потому что ваше первое впечатление можно повторить.
Отчасти скорбь геометрии возникает именно отсюда: первый же взгляд на прекрасную геометрическую конструкцию выстраивает наши мысли таким образом, что вернуть их прежний порядок уже невозможно. Нельзя во второй раз посмотреть на нее, как в первый.
Приведу другой пример такого же толкования скорби, снова обратившись к фрактальной геометрии. Все двадцать лет, что я вел этот курс в Йельском университете, моя первая лекция неизменно была посвящена обзору основного понятия – самоподобия. Еще в первой главе мы сказали, что треугольник Серпинского состоит из трех частей – левой нижней, правой нижней и левой верхней, – как показывает рисунок на следующей странице. Каждая из частей подобна всей фигуре в целом, поэтому она называется самоподобной фигурой. Впоследствии я приведу вам еще массу примеров из мира природы: папоротники, деревья, бассейны рек, береговые линии, горные хребты, облака на Земле, облака на Юпитере, звездные туманности, наши легкие, кровеносная и нервная системы, некоторые стихотворения Уоллеса Стивенса, множество (довольно длинных) музыкальных произведений и так далее и так далее. Тема самоподобия выявляет симметрию – симметрию увеличения, – которая дает ключ к иному пониманию многих форм в природе.
Вторая лекция фокусировала внимание слушателей на нахождении простых правил, по которым генерируются фрактальные изображения. Мы снова начинаем с треугольника Серпинского.
Затем сокращаем его масштаб наполовину и ставим этот уменьшенный треугольник на место левого нижнего треугольника изначальной фигуры. Потом вставляем такой же уменьшенный треугольник на место правого нижнего треугольника нижней фигуры (средний рисунок). И, наконец, снова сокращаем изначальный треугольник наполовину и вставляем на место левого верхнего треугольника (рисунок справа). Применив эти три правила к треугольнику Серпинского, вы получите треугольник Серпинского. На самом деле, треугольник и есть та
И сколько бы раз вы ни повторяли ту же операцию, картинка всё так же будет состоять из множества крохотных котов. Фигурой, возникающей в итоге, всегда будет треугольник Серпинского. Однако сам треугольник будет задан именно последовательностью из нарисованных котов.
Когда я показывал на экране проектора эти рисунки один за другим, все студенты смотрели с изумлением, многие даже открыв рот. Я слышал ахи и даже грубые возгласы. Как это происходит? Им хотелось узнать. Затем мы вводили более общие преобразования, комбинировали поворот и отражение со смещением и масштабированием. Когда вы уже набили руку, то запросто находите правила для построения и более сложных фракталов, вроде того, который показан на следующей странице. Тем не менее каждый год с десяток студентов говорили мне, что умение находить правила мешало им получать удовольствие от самих фигур. Стоило научиться раскладывать фракталы на составляющие, и фигуры отчасти утрачивали свою красоту.
Необратимость здесь налицо, но можно ли назвать это скорбью? Мои студенты точно бы так не сказали. Если они и описывали свои чувства, то обычно говорили, что им грустно; некоторые заявляли, что испытывают досаду от того, что прежнее ощущение тайны сменилось стремлением найти отражения, повороты и смещения. Эти прекрасные фракталы превратились в геометрические задачки. Скорбь тут ни при чем.
Для скорби нужна не просто необратимость. Скорбь – это необратимость вкупе с эмоциональным переживанием утраты и трансцендентностью. Если утрата не имеет для вас огромного значения, вы не почувствуете никакой скорби. Немногие из моих студентов (если таковые вообще есть) считают геометрию одной из важнейших сторон своей жизни.