Все эти великолепные достижения основывались на открытии Кантора, однако французское трио относилось к нему с подозрением. Парадоксы, которые открыли Бертран Рассел и другие мыслители, пробудили у Бореля, Лебега и Бэра опасения, что теория множеств, вероятно, содержит логические ошибки. Особенно скептически они отнеслись к так называемой аксиоме выбора – нововведению немецкого математика Эрнста Цермело, который придумал ее, чтобы расширить теорию Кантора. Согласно аксиоме выбора, некоторые множества существуют несмотря на то, что для их создания нет рецепта. Предположим, например, что у вас есть множество, состоящее из бесконечного числа пар носков. Скажем, вы хотите определить новое множество, в которое входит только по одному носку из каждой пары. Поскольку носки в паре идентичны, нет правила, которое позволило бы это сделать. Тем не менее аксиома выбора гарантирует, что такое множество существует, хотя для его создания нужно произвольно выбрать по носку бесконечное число раз.
В конце концов французское трио отвергло аксиому выбора – Борель объявил, что «таким рассуждениям в математике не место», – а с ним и применение высших бесконечностей как таковых. Что это – интеллектуальная робость? Авторы
Зато русское трио, работавшее в то же время параллельно с ними, с радостью приняло метафизические аспекты теории множеств. Главная фигура русского трио – Дмитрий Егоров – был человеком глубоко верующим. Как и его ученик Павел Флоренский, математик, получивший богословское образование и ставший священником (через несколько лет после Октябрьской революции Троцкий при виде отца Флоренского, выступающего на научной конференции в рясе, в изумлении воскликнул: «А это еще кто такой?!»). Флоренский стал духовным наставником другого ученика Егорова – Николая Лузина. И Егоров, и Флоренский входили в подпольный кружок имяславцев – влияние этой секты распространилось с провинциальных монастырей на московскую интеллигенцию, и Лузин, хотя и не входил в секту, симпатизировал ее философии. Все трое перенесли имяславие в математику. По всей видимости, они считали, что сам акт называния позволит им прикоснуться к бесконечным множествам, которые невозможно определить обычными математическими средствами. «Разве можно убедить себя в существовании математического объекта, не определив его?» – недоверчиво спрашивал Лебег. С точки зрения Флоренского это было все равно что спрашивать: «Разве можно убедить себя в существовании Бога, не определив Его?» Можно, конечно, считали русские – ведь само имя Господа, многократно произнесенное, несло с собой убежденность в Его существовании. (Неофициальным лозунгом имяславцев было «Имя Божие есть Бог».) Русские математики были убеждены, что достаточно просто назвать новые математические сущности – и они будут существовать.
Как имя может обладать такой волшебной силой, трудно себе представить. В современной философии есть две соперничающие теории того, как работают имена и названия. Согласно теории «дескриптивизма» (у истоков которой стоял немецкий логик Готлоб Фреге), у каждого имени или названия есть ассоциация с описанием, а предмет или явление, которые оно называет, – это то, что соответствует описанию. Например, если мы используем имя «Гомер», то имеем в виду человека, соответствующего описанию вроде «автор “Илиады” и “Одиссеи”». Более новая «каузальная» теория имен (ее отстаивает, в числе прочих, американский философ Сол Крипке) отрицает, что у названия есть ассоциированный дескриптивный смысл, и утверждает, что имя привязано к своему носителю исторической цепочкой коммуникаций, которая тянется в пространстве-времени до самого первоначального акта «крещения». Согласно одной теории, имена приклеиваются к носителям семантическим клеем, согласно другой – клеем каузальным.