Московская математическая школа процветала еще долго после того, как ее основатели-мистики исчезли с научного горизонта. В послевоенную эпоху советская столица как средоточие математических талантов уступала лишь Парижу. Однако высшие бесконечности, которым поклонялись имяславцы, отошли на второй план, а на смену теории множеств, которую предпочитал Лузин, пришли методы Колмогорова и Александрова, больше соответствовавшие господствовавшим взглядам. А что касается аксиомы выбора, вызвавшей столько споров, Курт Гёдель в 1938 году доказал, что она логически согласуется с другими, общепризнанными аксиомами теории множеств, так что необходимость в мистическом обосновании отпала. Поскольку ее применение не может вызвать никаких гибельных противоречий, математики получили свободу применять ее по своему усмотрению. Теперь им не нужно задумываться о том, описывает ли она платоновский мир бесконечных множеств.
И вот он перед нами – ключ к избавлению математики от мистицизма. Оттенок мистического науке (как субъекту) придает общепринятое мнение о природе его объектов. Объекты, изучаемые химией и ботаникой, – часть физического мира, а объекты математики, как считается, обретаются в трансцендентном мире, к которому нормальные способы познания неприменимы. Но вдруг таких трансцендентных объектов просто нет? Не превращается ли тогда математика в богословие без Бога? Вдруг (как настаивают философы-номиналисты) все это просто выдумки, восхитительно сложная волшебная сказка?
В каком-то смысле да. Если не существует подлинной математической реальности, подлежащей описанию, математики вольны сочинять любые истории, то есть исследовать всевозможные гипотетические реальности, дав волю воображению. Как говорил как-то сам Кантор, «суть математики – свобода». Согласно такой картине работа математиков состоит из утверждений «если – то»:
Воображение математиков подчиняется только одному ограничению (кроме необходимости заполучить надежную должность), и это логическая последовательность. Пока совокупность аксиом логически последовательна, она описывает возможную структуру. Но если оказывается, что аксиомы непоследовательны, то есть в них таится противоречие, значит, структуры, которые они описывают, невозможны, а следовательно, математики напрасно потратили на них время.
То есть математика – это всего лишь стиль рассуждений, а не наука о трансцендентных объектах? Не слишком ли безрадостна такая картина, чтобы вдохновить работающего математика? Авторы
К тому же есть и более яркий случай – Александр Гротендик. В шестидесятые годы Гротендик (сын русского анархиста, погибшего в Освенциме) работал в Париже и создал абстрактную основу для революционно-новой математики, что позволило ученым, работавшим в этой области, выражать идеи, которые до этого было невозможно сформулировать. В работах Гротендика налицо сильный мистический уклон. В своих пространных автобиографических сочинениях он описывает творческий процесс с участием «видений» и «вещих снов». Авторы
Гротендика, пожалуй, можно считать рекламой прагматической мощи мистицизма в математике. Он скончался в 2014 году отшельником в Пиренеях, где, по свидетельству редких гостей, провел последние десятилетия жизни «одержимым идеей дьявола: он считает, что тот не покладая рук разрушает божественную гармонию во всех уголках планеты».
Глава тринадцатая. Опасная идея бесконечно малого
Говоря о бесконечном, обычно имеют в виду бесконечно большое: немыслимые просторы, безграничный мир, безудержную силу, абсолют. Однако есть и другого рода бесконечность, совсем иная, пусть и по-своему восхитительная. Это бесконечно малое.