Но если начинаешь дробить реальность и делить Одно на Много, где остановиться? Демокрит считал, что вещество можно анализировать до уровня крошечных единиц – атомов, которые, хотя и конечны по размеру, больше делиться не могут. Однако тут вставал другой вопрос – о пространстве, театре перемен. Нет никаких причин, почему нельзя вечно продолжать процесс деления пространства на все более и более мелкие части. Следовательно, рано или поздно эти части окажутся меньше любой конечной величины.
Этот вывод завел плюралистов в страшный тупик, а все благодаря самому способному ученику Парменида – Зенону Элейскому. Зенон, обидевшись на тех, кто насмехался над его учителем, как рассказывает Платон, придумал ни много ни мало сорок диалектических доказательств единства и неизменности реальности. Самые известные из них – четыре парадокса движения, два из которых, «Дихотомия» и «Ахиллес и черепаха», направлены против бесконечной делимости пространства. Рассмотрим парадокс дихотомии. Чтобы проделать тот или иной путь, необходимо сперва пройти половину расстояния. Но для этого нужно сначала пройти четверть расстояния, а перед этим – одну восьмую часть и так далее. Иначе говоря, нужно проделать бесконечное число «под-путей» в обратном порядке. А значит, невозможно даже начать путь.
Говорят, когда Зенон рассказал этот парадокс Диогену Синопскому, Диоген «опроверг» его – встал и ушел. Но парадоксы Зенона отнюдь не тривиальны. Бертран Рассел называл их «невероятно тонкими и глубокими», и по сей день многие философы не считают, что они окончательно разрешены. Аристотель отметал их как глупости, но опровергнуть не мог, напротив, он добивался, чтобы их невозможно было ни доказать, ни опровергнуть, поскольку отрицал вовсе существование бесконечности в природе. Можно делить пространство сколько угодно, говорил Аристотель, но бесконечного числа частей никогда не получишь.
Отвращение Аристотеля к настоящей бесконечности возобладало в древнегреческой философии, а сто лет спустя «Начала» Евклида вычеркнули рассуждения о бесконечно малом и из геометрии. Это стало катастрофой для античной науки. Идея бесконечно малого предлагала заполнить понятийный пробел между числом и формой, статикой и динамикой. Возьмем хотя бы задачу о площади круга. Вычислить площадь фигуры, ограниченной прямыми, скажем, треугольника или квадрата – задача несложная. Но что делать, если границы фигуры криволинейны, как, например, у круга? Есть хитрый способ выйти из положения: притвориться, будто круг – это такой многоугольник, состоящий из бесконечного множества прямолинейных сегментов, каждый бесконечно малой длины. Именно такой подход позволил Архимеду в конце III века до н. э. вывести современную формулу площади круга с числом p. Однако Архимеду пришлось отказаться от применения бесконечности из-за евклидовых структур. Он был вынужден оформить свое доказательство как
Для статической геометрии метод исчерпывания оказался вполне действенным как альтернатива запретному бесконечно малому. Однако он оказался бесплодным для решения задач динамики, когда до бесконечности нужно дробить и пространство, и время. Например, падающее на землю тело постоянно ускоряется под воздействием гравитации. У него нет фиксированной скорости ни для какого конечного промежутка времени, пусть даже и в тысячную долю секунды: его скорость меняется каждый «миг». Аристотель считал понятие мгновенной скорости бессмысленным, евклидова аксиоматика не извлекала из нее никакой пользы. Осмыслить движение с постоянным ускорением можно было только рассуждениями с полной опорой на понятие бесконечно малого. Но именно таких рассуждений греки боялись как огня из-за