Читаем Изменчивая природа математического доказательства. Доказать нельзя поверить полностью

В наше время есть не так много людей — даже среди математиков, — которые изучают книгу Уайтхеда и Расселла. Но она стала важным шагом в развитии математической строгости, в понимании того, каким должно быть доказательство. Сейчас создано программное обеспечение, такое как Isabelle, которое на входе получает математическое доказательство (в таком виде, как современные математики используют в публикуемых статьях) и переводит его в формальное доказательство, в духе Уайтхеда и Расселла или аксиом теории множеств Цермело—Френкеля.

Наверное, надо подчеркнуть, что Уайтхед и Расселл стремились дать строго формальное построение математики. Их цель была вовсе не в том, чтобы создать что-то читаемое или понятное или хотя бы обучающее[23]. Они поставили цель создать архив математики, пользуясь правилами формальной логики. Сегодня математическая статья, написанная в духе Уайтхеда и Расселла, не будет опубликована. Ни один журнал не станет ее рассматривать, ведь такой способ выражения никак нельзя отнести к эффективной математической коммуникации.

Математические доказательства, как мы их публикуем сегодня, конечно же, менее формальны, чем в модели Уайтхеда—Расселла. Хотя мы и привержены строгим правилам рассуждения, некоторые шаги мы опускаем, иногда мы немного перескакиваем и оставляем подробности читателю, потому что хотим передавать свои идеи наиболее эффективным и изящным способом. Обычно публикация представляет собой набор орудий, с помощью которых читатель может самостоятельно построить свое собственное доказательство.

Примерно так же действуют химики: публикуют статью с описанием того, как проводился некоторый эксперимент (и какие выводы можно сделать), так что заинтересованный читатель может такой эксперимент воспроизвести. Часто бывает так, что важная химическая статья, описывающая годы напряженной работы десятков человек, содержит всего лишь несколько страниц. Это крайнее применение бритвы Оккама: записываются только ключевые идеи, так что другие ученые при необходимости могут воспроизвести эксперимент.

1.8 Платонизм или кантианство

Вопрос, который занимал философов математики много столетий, и особенно рьяно последние годы, звучит так: к какому виду следует отнести математическую деятельность — к платоническому или кантианскому? Как это понимать?

Платонический подход к миру заключается в том, что математические факты существуют независимо, сами по себе, как, собственно, классические идеалы Платона, а практикующие математики открывают эти факты примерно так же, как Колумб открыл Америку или Джонас Солк открыл вакцину от полиомиелита.

С кантианской точки зрения математики сами создают свой предмет. Идеи множества, группы или псевдовыпуклости — творение человеческого разума. Сами по себе они в природе не существуют. Мы (математическое сообщество) создали их.

Согласно моей собственной точке зрения, обе эти парадигмы имеют право на существование, и обе играют определенную роль в жизни любого математика. Одни математики обычно отправляются в свои офисы, сидят и размышляют или проверяют математические идеи, которые уже родились и их уже описали в журналах другие математики. А другие создают вещи с чистого листа: возможно, создают новые системы аксиоматики или определяют новые понятия, формулируют новые гипотезы. Эти два вида деятельности ни в коей мере не исключают друг друга, и оба дают свой вклад в плавильный котел математики.

Кантианская позиция поднимает интересный эпистемологический вопрос. Считаем ли мы, что математика создается заново каждым индивидуумом? Если это так, то найдутся сотни, если не тысячи разных индивидуумов, творящих математику изнутри. Как они могут общаться и делиться своими идеями? Или кантианский подход предполагает, что математика создается некоторым общим сознанием, агрегированным из всех математиков, а после этого каждому отдельному индивидууму остается только «открыть» то, что создает это агрегированное сознание? Это уже звучит очень платонически.

Платоническая точка зрения на действительность, как кажется, исходит из теизма. Если математические истины имеют независимое существование, обитая где-то там в вечности, то кто их создал? И как? Это какая-то высшая сила, с которой нам всем следует познакомиться поближе? Можно считать, что как только математическое понятие или система аксиоматизированы, все дальнейшие результаты платонически уже существуют, математикам остается только открыть их и их доказательства. Кантианская точка зрения исчезает где-то за горизонтом. Искусство математики заключается в том, чтобы понять, какие системы, теоремы и доказательства интересны.

Перейти на страницу:

Похожие книги

Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История России с древнейших времен до конца XVII века
История России с древнейших времен до конца XVII века

Учебное пособие «История России» написано под редакцией выдающихся советских и российских историков, членов-корреспондентов РАН А.Н. Сахарова и А.П. Новосельцева. Пособие состоит из трех книг. Первая книга «Истории России» охватывает период с древнейших времен до конца XVII века. В ней показан уникальный путь России от рождения до периода начала социальных потрясений допетровской эпохи. Несмотря на то, что опорой для изложения исторической оценки остается факт, в настоящем пособии факты дополнены трудами современных российских историков, вобравшими в себя новую и свежую источниковую базу, оригинальные, освобожденные от прежних конъюнктурных доминант исследовательские подходы, лучшие достижения мировой историографии. Учебное пособие предназначено для изучения курса истории студентами вузов, однако будет интересно всем, кто хочет понять место и роль народов России в мировом развитии в период с древнейших времен до конца XVII века.

Анатолий Петрович Новосельцев , Андрей Николаевич Сахаров , Владислав Дмитриевич Назаров , Николай Михайлович Попов

Учебники и пособия ВУЗов