Читаем Изменчивая природа математического доказательства. Доказать нельзя поверить полностью

Платонический подход отчасти превращает нас в физиков. Для физика нет большого смысла в том, чтобы изучать предмет, просто создавая понятия путем чистого измышления. На самом-то деле предполагается, что физик описывает окружающий мир. Физик вроде Стивена Хокинга, с творческой жилкой и воображением, способен выдумывать идеи вроде «черных дыр», «супергравитации» и «червоточин», но только с целью объяснить устройство вселенной. Все же это не сочинение сказок.

У всего сказанного есть философские следствия. Физики не считают делом чести доказывать то, что утверждают в своих исследовательских статьях. Они часто прибегают к другим способам рассуждения — от описания и аналогии до эксперимента и вычислений. Если мы, математики — платоники, описывающие мир, который «уже есть», то почему нам нельзя пользоваться теми же методами, которые применяют физики? Почему мы обречены доказывать?

Очень глубокое и вдохновенное обсуждение этих вопросов можно найти в [MAZ]. Потребуется некоторое время, чтобы получить ответы на вопросы, поднятые в этой работе. 

1.9 Экспериментальная природа математики

Все, что было сказано в последних двух разделах, — точно и довольно полно, но не вполне правдиво. На самом деле экспериментированием математики занимаются. Как оно вписывается в строгую аксиоматическую методологию, которую мы описали? На самом деле до сих пор мы обсуждали, как в математике записывают результаты. Мы используем аксиоматический метод и доказательство с целью хранить наши идеи так, чтобы предмет изучения оставался надежным, воспроизводимым и безупречным. Математические идеи хорошо путешествуют и переносят проверку временем именно потому, что записываются в виде пошаговых доказательств. Но открытие математических фактов происходит совсем иначе. Практикующие математики делают открытия методом проб и ошибок: они работают над примерами, разговаривают с коллегами, выдвигают гипотезы, читают лекции, пытаются сформулировать результаты, меняют доказательства, выводят частичные результаты и ошибаются[24]. Не удаются, наверное, первые десять попыток сформулировать новую теорему. Посылки приходится модифицировать и иногда усиливать. Выводы тоже могут быть изменены или ослаблены. К теореме подбираются, осознают ее и формулируют методом проб и ошибок. Часто случается так, что опытный математик понимает, что нечто верно, может описать это в целом, но не может сформулировать точно. Практически невозможно сразу же записать строгую формулировку теоремы.

Между прочим, это одно из самых поразительных замечаний о профессиональных математиках. Целую жизнь можно провести, совершая ошибки и пытаясь на них учиться. Вряд ли есть какая-нибудь другая профессия, где можно позволить себе такое. Математик в попытках овладеть очередным святым граалем — новой теоремой, новой теорией или новой идеей — легко может потратить два-три года или даже больше, экспериментируя, пробуя, терпя неудачи и начиная все заново.

Но вот в чем дело. Как только математик добирается до сути, а затем приходит наконец к строгой формулировке и доказательству новой идеи, тут-то и приходит черед аксиоматического метода. Ключевая идея состоит в том, что методология


Определения Аксиомы Доказательства


это способ записи математических результатов. Это способ, гарантирующий постоянство наших идей, их способность путешествовать по миру и быть понятными следующим поколениям. Но это не есть путь, на котором происходит открытие математики.

Существует замечательный математический журнал под названием Experimental Mathematics. Этот журнал, самым конструктивным образом, идет вразрез со всей математической традицией. Традиция, восходящая к Евклиду, велит записывать математические идеи в строгой, формализованной аксиоматической манере. Это делается так, что ничто не указывает на то, как идея возникла, или какие неудачные попытки ей предшествовали, какие могли бы быть частичные результаты. Короче говоря, опубликованная математическая работа напоминает сияющий хрустальный шар, всему остальному миру остается только им любоваться[25].

Журнал Experimental Mathematics переворачивает этот архетип с ног на голову. Издание поощряет сообщения о неполных результатах, описания данных, полученных в ходе компьютерных экспериментов, идеи, полученные из графических изображений, оценку числовых данных и анализ физических экспериментов. Зеленый свет получают умозрительные рассуждения, сообщения о неполных или частичных результатах. Здесь публикуются в основном статьи, которые другие традиционные математические журналы даже рассматривать не будут. Можно сказать, что этот журнал — решительный шаг в признании той части математического процесса, который никогда формально не был принят. Таким образом, создается весомый и долговременный вклад в математическую литературу.

Перейти на страницу:

Похожие книги

Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История России с древнейших времен до конца XVII века
История России с древнейших времен до конца XVII века

Учебное пособие «История России» написано под редакцией выдающихся советских и российских историков, членов-корреспондентов РАН А.Н. Сахарова и А.П. Новосельцева. Пособие состоит из трех книг. Первая книга «Истории России» охватывает период с древнейших времен до конца XVII века. В ней показан уникальный путь России от рождения до периода начала социальных потрясений допетровской эпохи. Несмотря на то, что опорой для изложения исторической оценки остается факт, в настоящем пособии факты дополнены трудами современных российских историков, вобравшими в себя новую и свежую источниковую базу, оригинальные, освобожденные от прежних конъюнктурных доминант исследовательские подходы, лучшие достижения мировой историографии. Учебное пособие предназначено для изучения курса истории студентами вузов, однако будет интересно всем, кто хочет понять место и роль народов России в мировом развитии в период с древнейших времен до конца XVII века.

Анатолий Петрович Новосельцев , Андрей Николаевич Сахаров , Владислав Дмитриевич Назаров , Николай Михайлович Попов

Учебники и пособия ВУЗов