Итак, что же такое доказательство? Если подходить эвристически, доказательство — это такой инструмент риторики, который используется, чтобы один человек убедил другого, что некоторое математическое утверждение верно. А как это можно сделать? Поразмыслив, можно предположить, что естественный способ доказать, что что-то есть новое (назовем его B) — это как-то связать его с чем-то старым (назовем его A), про которое уже известно, что оно истинно. Таким образом, возникает понятие
Рис. 1.4.
Логический выводРис. 1.5.
Последовательность логических выводовМы не можем сказать, что у такого пути рассуждений нет начала, что он тянется бесконечно далеко к туманному началу времен. Ведь в таком случае становятся безосновательными наши размышления о том, каким следует быть доказательству. Мы пытаемся подтвердить новые математические факты, исходя из старых. А если вывод уходит бесконечно далеко в прошлое, мы не можем даже ухватить, на чем изначально обоснована наша логика.
Эти вопросы заставили античных математиков размышлять о природе математического доказательства. Фалес (640–546 до н. э.), Евдокс (408–355 до н. э.) и Теэтет Афинский (417–369 до н. э.) формулировали теоремы как формальные объявления некоторых идей, которые они хотели провозгласить как факты или истины. Считается, что Фалес доказал некоторые из этих теорем в геометрии (а позднее они были включены в более широкую систему Евклидом).
Впервые нынешний способ размышлять о математике был формализован Евклидом Александрийским. Вначале он дал определения, затем аксиомы, а потом уже теоремы — именно в таком порядке. Нельзя не согласиться, что Евклид создал парадигму, которой следовали все математики на протяжении 2300 лет. Это была правильная математика. Чтобы справиться с проблемой бесконечных логических цепочек, мы, следуя Евклиду, начнем с того, что примем набор
Что такое определение? Определение объясняет смысл какого-то термина, но даже с таким простым подходом связаны аналитические проблемы. Взять хотя бы первое определение, которое мы собираемся сформулировать. Предположим, что мы хотим определить
Рис. 1.6.
Урок чтения формул в Музее Математики (© Sidney Harris, www.sciencecartoonsplus.com)Ясно, что наше
Определения дают нам язык для занятий математикой. Мы формулируем наши результаты, или
Что такое аксиома? Аксиома[8]
(или постулат[9]) — это математическое выражение факта, который считается самоочевидным, сформулированное с использованием терминологии, введенной в принятых определениях. Аксиомы не доказывают. Их считают данными, такими очевидными и заслуживающими доверия, что никаких доказательств для них не требуется.