Цель научных исследований человека в XXI веке – добраться до Марса. Луна станет важным полигоном для тестирования оборудования и технологий, которые нам потребуются, чтобы достичь его, потому что красная планета будет нашей долгосрочной целью. Марс – более интересное и гостеприимное место, чем Луна. И для этого есть свои причины. День на Марсе от одного восхода до другого восхода Солнца длится двадцать четыре с половиной часа, что очень похоже на нашу родную планету. А на Луне продолжительность одного дня составляет более двадцати девяти земных дней. На Марсе есть атмосфера, хотя и очень тонкая, но она может быть полезной. Есть вода, замерзшая в виде полярных ледниковых покровов. Возможно, в прошлом на Марсе были океаны. На Марсе с гораздо большей вероятностью, чем на Луне, может быть жизнь, хотя бы в виде микробов. Гравитация на Марсе вдвое сильнее, чем на Луне, и гораздо больше напоминает гравитацию на Земле. Радиационная обстановка намного лучше, потому что планета находится дальше от Солнца. Почва похожа на почвы пустынь на Земле, и может использоваться в сельском хозяйстве. В то время как почва на Луне чрезвычайно твердая и очень похожа на битое стекло. И этот список можно продолжать и продолжать.
Теперь, когда вы убедились, что мы должны отправить астронавтов на Марс, следует задать вопрос, какие технологии нужно разработать, чтобы попасть туда. А почему бы просто не полететь? Есть множество голливудских фильмов, в которых большой космический корабль волшебным образом появляется и уносит экипаж на красную планету. Например, как в недавно вышедшем на экран фильме «Марсианин». Давайте вникнем в детали того, что нам потребуется, чтобы это путешествие состоялось. Список получится довольно обширным.
Потребуется разработать много видов оборудования: посадочные модули, марсоходы для перевозки астронавтов, более эффективные и надежные системы переработки воды и воздуха, скафандры, которые можно неоднократно использовать в пыльной среде и которые экипажу будет легко обслуживать, тренажеры, которые не весят много. Будут нужны полезные роботы, неперегорающие электрические лампочки, компактное оборудование для уборки и т. д. Надежность оборудования – очень большая проблема; за своей 200-дневный полет я дважды в течение недели ремонтировал оборудование по удалению углекислого газа, используя много громоздких и тяжелых запчастей. Такие критически важные системы должны стать более надежными и легкими, а для их технического обслуживания должна использоваться 3D-печать. Эти проблемы не являются непреодолимыми, и мы должны работать над усовершенствованием оборудования, чтобы обеспечить возможность полетов на Марс.
Помимо всего этого есть одна всеобъемлющая технология, которую следует развивать, – это ядерная энергетика. Она будет служить двум целям: включению электрической двигательной установки в космосе и обеспечению экипажа электричеством во время нахождения на орбите Земли. Зонды НАСА с 1960-х годов работают на атомной энергии, которую генерируют RTG (радиоизотопные термоэлектрические генераторы). В них используются несколько килограммов плутония или другого радиоактивного материала, который нагревается и одновременно испускает низкоуровневое излучение, нагревая термопары, которые затем превращают тепло в электричество. Обычный космический зонд RTG генерирует несколько сотен ватт. Поскольку период полураспада плутония составляет более восьмидесяти семи лет, эти зонды работают очень долго. Фактически RTG зонды “Вояджер”, запущенные в 1976 году, все еще генерируют электрическую энергию мощностью примерно в 200 Вт, и этого достаточно для работы некоторых базовых инструментов и отправки на Землю слабых радиосигналов, несмотря на то, что в настоящее время зонды находятся за пределами Солнечной системы.
Эти устройства просты, безопасны и очень надежны. Однако они генерируют всего лишь сотни ватт и поэтому бесполезны для освоения космоса человеком. Для запуска двигателей космических кораблей нужны мегаватты энергии, а для работы наземных систем жизнеобеспечения требуются киловатты энергии.