Выше мы привели таблицу значений искажений, возникающих при измерении широт звезд с помощью некоторого прибора, например, астролябии, с эллипсоидально деформированным широтным кольцом. Отметим, что величина искажения широты звезды А зависит от значения истинной широты звезды А и от величины λ = R3
/R1. Здесь R1 и R3 — это полуоси эллипсоидального широтного кольца прибора. Положим, как и выше, λ = 1 + ε. Тогда значение ε = 0 соответствует идеальному кольцу, то есть когда эллипс превращается в окружность. Следовательно, в этом случае искажения будут равны нулю на всех широтах. Как видно из табл. 7.4, максимальные по абсолютной величине искажения появляются на широте 45 градусов. Это нетрудно показать также и теоретически. В табл. 7.4 приведены значения разности b' — b, где b — точное значение широты звезды, а b' — значение широты, измеренное по отметкам на эллипсоидальном кольце с параметром λ = 1 + ε. Величины b и ε являются входами таблицы. Значения искажений b' — b были рассчитаны нами численно, с помощью компьютера.Из табл. 7.4 видно, какую погрешность мы допускаем, заменяя рассмотренное выше нелинейное преобразование координатной сетки его главной линейной частью. Учет этой погрешности не меняет наших выводов относительно невозможности допустить такие искажения прибора Птолемея, которые привели бы к расширению интервала датировок до скалигеровской эпохи Альмагеста: I–II века н. э.
8.8. Выводы
1) Теоретически возможны искажения астрономического прибора, приводящие к тому, что порождаемая им система координат в пространстве подвергается некоторому линейному преобразованию.
2) Можно теоретически вычислить зависимость между коэффициентом ε искажения прибора и возникающей при этом ошибкой в определении широт звезд.
3) Опираясь на материал конкретных каталогов, например, Альмагеста, можно найти численные значения для ε и Δψ.
4) Никакими разумными искажениями астрономического прибора нельзя объяснить слишком большую широтную ошибку, найденную в каталоге Альмагеста при условии, что наблюдения проводились около начала н. э.
5) Полученные нами выше результаты, — включая датировку каталога Альмагеста 600-1300 годами н. э., — устойчивы к допущению разумно малых искажений наблюдательного прибора. Другими словами, введя гипотезу о возможном искажении прибора, все равно нельзя датировать каталог Альмагеста эпохами около начала нашей эры.
9. Поведение долгот именных звезд Альмагеста
При датировке каталога Альмагеста мы исследовали отдельно широты и долготы каталога. Выяснилось, что точность широт в Альмагесте существенно выше, чем точность долгот. Именно анализ широт позволил нам получить содержательный интервал возможных датировок каталога Альмагеста.
Естественно, мы провели все необходимые вычисления и проверили — какая датировка получается, если вместо широт использовать долготы. Как и следовало ожидать по итогам нашего предварительного анализа, оказалось, что датировать каталог Альмагеста в пределах интервала времени от 1000 года до н. э. до 1900 года н. э., основываясь лишь на долготах звезд, не удается. Причина — слишком низкая точность долгот звезд в Альмагесте.
Возможность датировки каталога Альмагеста на основе совместного учета широт и долгот мы рассмотрим в следующем разделе.
Итак, посмотрим, какая датировка Альмагеста получается, если за основу брать не широты, а долготы звезд.
Обозначим через Li
(t, γ, φ) значение долготы i-й звезды с учетом поворота звездной сферы на углы γ и φ. Это означает, напомним, что мы компенсируем возможную ошибку в положении эклиптики. Ошибка задается параметрами γ и φ. Для того, чтобы по возможности повысить точность выводов, рассмотрим лишь 6 именных звезд каталога Альмагеста, лежащих в области Zod А и в ее непосредственной окрестности. Это — Арктур, Регул, Антарес, Спика, Аселли, Процион. Про эти шесть звезд в главе 6 достоверно выяснено, что их групповая ошибка γ совпадает с величиной γZodAstat.Вычислим для этих звезд величины Li
(t, γZodAstat(t) φZodAstat(t)), то есть долготы этих звезд после компенсации соответствующей групповой ошибки на эпоху t. Разумеется, при этом можно совершить погрешность и, быть может, значительную. Причин, по крайней мере, две. Первая: параметр φ сильно влияет на значения долгот. В то же время, как мы видели, этот параметр определяется неустойчиво. Следовательно, нет никакой гарантии, что для всех шести звезд он один и тот же и равен φZodAstat. Вторая причина такова. Выше мы не изучали групповые долготные ошибки, которые также могут существовать, см. [1339]. Их анализ приводит к необходимости введения еще одной величины, параметризующей групповую ошибку. Можно взять параметр τ, см. главу 3. Это — угол поворота звездной сферы вокруг новых полюсов эклиптики, задаваемых параметрами γ и φ.