Обозначим ΔLi
(t) = Li(t,γZodAstat(t),φZodAstat(t))-li. Если изобразить поведение функции ΔLi(t) то она может быть представлена в виде суммы почти линейной функции (равномерное изменение долготы вследствие прецессии) и нерегулярной «добавки», отвечающей различного рода погрешностям. Поэтому, чтобы исключить из рассмотрения влияние прецессии, а также возможной систематической ошибки τ, введем величинуВеличина ΔL(t) достаточно точно измеряет изменение долгот рассматриваемых 6-ти звезд вследствие прецессии. Положим ΔL0
i(t) = ΔLi(t)-ΔL(t).На величину ΔL0
i(t) прецессия влияния уже практически не оказывает.На рис. 7.38 показаны изменения величин как функций предполагаемой датировки 1 для шести рассматриваемых здесь звезд Альмагеста. Первое, что следует из рисунка, — это малые скорости изменения величин ΔL0
i(t) со временем. После компенсации прецессии «быстрые» звезды Альмагеста оказались очень «медленными» по долготам. Например, скорости изменения долгот Арктура и Регула почти равны друг другу. Самой быстрой звездой из шести становится Процион. Но его долгота за 3000 лет, — от 1100 года до н. э. до 1900 года н. э., — изменяется лишь на 17′. То есть чуть больше 5′ за тысячу лет. Ясно, что такого медленного изменения долготы совершенно недостаточно для содержательной датировки.На рис. 7.39 изображены два графика, которые в принципе могли бы служить для датировки. Однако поведение этих графиков говорит об их полной бесполезности в этом качестве. А именно, рассмотрим две функции:
ΔLmax
(t) = max |ΔL0i(t)|, ΔL0(t) = max ΔL0i(t) — min ΔL0i(t).Первая из них представляет собой максимальное по рассматриваемым звездам уклонение реальных долгот от долгот, записанных в Альмагесте. Уклонение берется по абсолютной величине, с учетом прецессии. Вторая функция, уже не зависящая от прецессии, — это разность между максимальным и минимальным уклонениями. Функция ΔLmax
(t) достигает минимального значения при t = 15, то есть в 400 году н. э., а функция ΔL0(t) — при t = 32,5, то есть около 2350 года до н. э. Обе функции принимают сравнительно большие значения, а именно, ΔL0(t) ≥ 25′, а начиная со скалигеровской эпохи Гиппарха, ΔL0(t) ≥ 30′. Наконец, ΔLmax(t) ≥ 17′. Все это говорит о том, что точность долгот слишком низка по сравнению со скоростями собственного движения. Мы не можем извлечь отсюда содержательное представление об истинной дате наблюдений.Итак, вычисления подтвердили, что долготы каталога Альмагеста малоинформативны ввиду их низкой точности. По-видимому, причина этого правильно вскрыта Р. Ньютоном [614]. Он утверждал, что долготы в Альмагесте были кем-то подделаны, см. также главу 2. Сами мы подробных исследований в этом направлении не проводили. Вполне возможно, что при анализе долгот статистическими методами в их поведении также обнаружатся некоторые закономерности. Например, можно будет выявить в долготах отдельных частей каталога Альмагеста наличие групповых ошибок. Но, так это или нет, проведенные нами исследования показывают, что использовать долготы для уточнения датировки каталога Альмагеста, по-видимому, бессмысленно.
10. Поведение дуговых невязок в конфигурации, образованной информативным ядром Альмагеста
В главе 3 уже обсуждался вопрос о возможности датировки каталога путем сравнительного анализа двух конфигураций. Одна — неподвижная, образованная звездами Альмагеста. Другая — подвижная, образованная современными звездами. Было отмечено, что это сравнение можно провести вообще без ссылок на теорию Ньюкомба. Например, если рассматривать лишь разности дуговых расстояний в сравниваемых конфигурациях. Среди трудностей, препятствующих применению данного метода, были упомянуты следующие. Во-первых, — возможные ошибки в отождествлениях звезд. Во-вторых, — низкая точность измерений координат, приводящая к непомерно большим интервалам датировки. В третьих, — невозможность, при таком подходе, разделить координаты на точно и неточно измеренные компоненты. Скажем, на широты и долготы.