Пункт 3. Начнем с исследования широтной синусоиды Петерса. Имеется естественный механизм, позволяющий объяснить появление систематических ошибок в широтах зодиакальных звезд. Это — ошибка в положении эклиптики наблюдателя по отношению к истинной эклиптике в момент наблюдения, который априори нам неизвестен.
Вернемся снова к рассмотрению эклиптики П(t0
) в момент наблюдения t0. На рис. 8.4 отмечена точка равноденствия Q(t0), принятая нами за начало отсчета. Выше было построено поле широтных ошибок для t = 18. Сделаем то же самое для момента t0 наблюдения звезд из каталога Альмагеста и изобразим соответствующее поле широтных ошибок на рис. 8.5. Сглаживающую кривую обозначим через с(X, К(t0,0,0)). См. пунктир на рис. 8.5. Объясним это обозначение. Как и ранее, через X обозначен каталог Альмагеста. Через K(t, β, γ) мы обозначаем реальный каталог К(t), описывающий реальные положения звезд на эпоху t, возмущенный параметрами β и γ. См. главу 6. Таким образом, К(t0, 0, 0) — это каталог, не подвергнутый случайным возмущениям, и показывающий реальные положения звезд в момент наблюдения t0, нам априори неизвестный.Как было объяснено в главе 6, чтобы найти оптимальный в среднеквадратичном смысле поворот эклиптики, приводящий к данному полю ошибок, необходимо решить соответствующую задачу регрессии. Для этого нужно использовать в качестве семейства аппроксимирующих кривых двупараметрическое семейство синусоид. Первым параметром в этом семействе является амплитуда синусоиды, а вторым — ее фаза. Эта задача решена нами в главе 6 как для всего Альмагеста, так и для различных его частей. В том числе и для Зодиака, интересующего нас в данный момент. Оптимальную аппроксимирующую синусоиду мы обозначим через s(Х, К(t, 0, 0)). См. сплошную линию на рис. 8.5. Параметры синусоиды мы обозначим через А* (амплитуду) и φ* (фазу).
Пункт 4. Стоит обсудить понятие фазы аппроксимирующей синусоиды. Дело в том, что фаза определена лишь с точностью не лучше 15 градусов. Дадим два практически эквивалентных объяснения этого факта. Первое основано на анализе влияния на фазу аппроксимирующей синусоиды ошибки наблюдателя в положении эклиптики. На рис. 8.6 изображены следующие объекты. Во-первых, — истинный экватор в момент наблюдения t0
. Этот экватор, как объяснялось выше, можно считать практически совпадающим с экватором наблюдателя. Во-вторых, — истинная эклиптика на момент t0 и эклиптика наблюдателя.Мы знаем, что угол между эклиптикой наблюдателя и истинной эклиптикой равен примерно 20′. Это — ошибка у наблюдателя. Угол между экватором и эклиптикой равен ε, что приблизительно составляет 23 градуса. При этом неважно, какую именно из двух эклиптик мы в данный момент рассматриваем, поскольку угол между ними мал по сравнению с 23 градусами. Дуга на рис. 8.6 изображает ошибку наблюдателя в положении точки весеннего равноденствия. Как мы знаем, эта ошибка может составлять около 10′. Напомним, что 10 минут — это цена деления каталога Альмагеста. Будем считать, что дуга RQ приблизительно составляет 10′. В этом случае дуговое расстояние WQ составляет приблизительно 10′ × sin 20°, то есть около 5′. Тогда дуговое расстояние φ, то есть дуга MQ на рис. 8.6, составляет примерно 5′/sin 20′. Следовательно, около 15°. Осталось отметить, что дуга MQ изображает в точности фазу аппроксимирующей синусоиды. Мы отсчитываем фазу синусоиды от точки Q(t) весеннего равноденствия на истинной эклиптике П(t).
Итак, минутные возмущения в определении эклиптики наблюдателя порождают градусные возмущения фазы синусоиды, то есть фаза «неустойчива».
Это же обстоятельство можно объяснить в рамках задачи аппроксимации сглаживающей кривой с(Х, K(t, 0, 0)) оптимальной синусоидой s(X, K(t, 0, 0)).