На рис. 8.10 также изображена оптимальная синусоида s(X, К(18, 0, 0)), параметры которой таковы: амплитуда 16′, фаза — 22°. См. главу 6.
Пункт 7. Выше мы рассматривали различные свойства поля широтных ошибок относительно истинного момента наблюдений t0
. Теперь посмотрим, как должно выглядеть поле широтных ошибок относительно произвольного момента t, не совпадающего, вообще говоря, с t0. На рис. 8.11 изображены:1) Истинная эклиптика П(t) в момент наблюдения t0
.2) Эклиптика наблюдателя, показанная пунктиром и не совпадающая с П(t0
) в силу ошибки, сделанной наблюдателем, составителем каталога Альмагеста.3) Истинная эклиптика П(t) в любой другой фиксированный момент времени t.
На эклиптиках П(t0
) и П(t) отмечены точки весеннего равноденствия Q(t0) и Q(t). Точка N изображает пересечение эклиптик П(t) и П(t0). Расстояние от точки М до эклиптики П(t) достаточно малó, а именно, оно не превосходит 20′, если |t — t0| не превосходит 2000 лет. Следовательно, поле широтных ошибок относительно эклиптики П(t) должно аппроксимироваться суммой двух синусоид. Первая синусоида, см. пунктир на рис. 8.12, возникает из-за ошибки наблюдателя в момент времени t0. Она подробно обсуждена нами выше. Фаза этой синусоиды относительно точки весеннего равноденствия Q(t) на эклиптике П(t) приблизительно складывается из ее фазы относительно точки весеннего равноденствия Q(t0) (дуга MQ(t0) на рис. 8.11) и из дугового расстояния RQ(t). Здесь имеется в виду алгебраическая сумма, то есть сумма со знаками. Дуга RQ(t) равна величине прецессии за время t — t0.Вторая синусоида st,
t0 изображенная на рис. 8.12 сплошной линией, возникает из-за отклонения эклиптики П(t) от эклиптики П(t0). Она имеет амплитуду, приблизительно равную 47″ × |t — t0|. См. [1222] или главу 1. Ее фаза определяется по формулам для прецессии из раздела 5 главы 1. Эти формулы взяты из [1222].Результирующая аппроксимирующая кривая является суммой этих двух синусоид. Эта кривая имеет один локальный максимум и один локальный минимум на окружности, то есть на эклиптике.
Отсюда вытекает следующее простое утверждение. Рассмотрим два момента времени, t0
и t. Тогда сглаживающая кривая с(Х, К(t, 0, 0)) приблизительно совпадает с суммой двух кривых: с(Х, К(t0, 0, 0)) = с(Х, К(t0, 0, 0)) + st,t0. Таким образом, слегка огрубляя, можно сказать, что синусоида типа синусоиды Петерса для момента времени t приблизительно слагается из аналогичной синусоиды для момента t0 и синусоиды, отвечающей повороту эклиптики за время t-t0, то есть от t0 до t. Это общее утверждение, справедливое для всех пар t и t0.Пункт 8. Теперь посмотрим, какая же результирующая аппроксимирующая кривая должна получиться для 100 года н. э., то есть для t = 18. Как было только что объяснено, для этого нужно сложить две синусоиды. Первая из них отвечает истинному моменту наблюдения t0
, а вторая — тому моменту времени t, для которого рассчитывается результирующая аппроксимирующая кривая. Возьмем в качестве «истинного времени наблюдения» значение t0 = 9, то есть примерно 1000 год н. э. Это значение t0 является средней точкой найденного нами интервала возможных датировок для каталога Альмагеста 600-1300 годы н. э., то есть от t = 13 до t = 6. Первая синусоида, см. пунктир на рис. 8.13, имеет амплитуду 24′ и фазу — 5°. Эта фаза слагается из -17°, см. дугу MQ(t0) на рис. 8.11, и 12°, то есть из прецессии за приблизительно девятьсот лет.Вторая синусоида, см. тонкую сплошную линию на рис. 8.13, отвечает выбору момента t = 18, то есть 100 году н. э. См. выше. Ее амплитуда составляет около 47″ × 9 = 7′, см. выше, а ее фаза равна примерно 160°, см. главу 1. На отрезке от -20° до 160° эта кривая расположена на рис. 8.13 ниже оси абсцисс, то есть отрицательна. Складывая две синусоиды, получаем результирующую аппроксимирующую кривую, показанную на рис. 8.13 жирной сплошной линией.