Таким образом, Ю.Н. Ефремов очевидно полагает, что истинная дата должна оказаться достаточно близко к его «средней смоделированной дате» Т0
, причем эту близость он оценивает «с учетом полученных выше среднеквадратических ошибок» [273], с. 313.Этот подход совершенно не верен. Ясно, что в качестве средней смоделированной даты T0
Ю.Н. Ефремов получает просто свою исходную оценку Т0 с добавлением некоторого случайного возмущения, внесенного самим Ю.Н. Ефремовым. В качестве же распределения смоделированных дат он получает некоторое распределение с центром в этой исходной датировке Т0 по данной группе. Ю.Н. Ефремов полагает, что истинная дата должна лежать не слишком далеко от центра этого распределения. То есть, другими словами, — что вносимые им случайные возмущения с некоторой заметной вероятностью случайно «захватят» истинные положения птолемеевских звезд. Иначе говоря, он надеется, что при его моделировании ошибки Птолемея случайно уничтожатся. Причем — с заметной вероятностью. Именно это и утверждает Ю.Н. Ефремов в приведенной выше цитате, говоря что дату позднее 900 года н. э. молено получить при моделировании лишь со «слишком маленькой вероятностью 0,2». По его мнению, это делает средневековую датировку Альмагеста слишком маловероятной.Но дело в том, что исходная его датировка Т0
, вокруг которой группируются смоделированные датировки, отличается от истинной даты на некоторую величину. Эта величина смещения, как показывает простой расчет, сделанный нами выше, может быть достаточно большой. В случае Арктура она оценивается снизу величиной 420 лет, см. выше. Указанное смещение определяется индивидуальной ошибкой Птолемея в координатах быстрой звезды, а также индивидуальными ошибками для звезд выбранного окружения. Кстати, как показали наши расчеты, она может очень сильно зависеть от выбора окружения. Поэтому в значении Т0 уже зафиксирована некоторая, возможно весьма значительная, индивидуальная ошибка. «Моделируя» добавочные случайные ошибки звезд окружения, Ю.Н. Ефремов, таким образом, строит некоторое распределение вокруг возможно сильно смещенной истинной даты. Однако, приводя графики смоделированных им распределений, Ю.Н. Ефремов, как следует из его слов, полагает, что истинная дата должна каждый раз находиться где-то близко к центру этих распределений. Во всяком случае, в некотором доверительном интервале с уровнем доверия порядка 0,8, поскольку вероятность 0,2 он считает уже слишком малой.ЭТО НЕВЕРНО. Приведенная выше простейшая оценка показывает, что истинная дата может находиться очень далеко от центра такого смоделированного распределения. Например, для Арктура — более чем на 420 лет, см. выше. В то же время, разброс смоделированных дат вокруг смещенной даты может быть не очень сильным. Дело в том, что моделируя такой разброс, Ю.Н. Ефремов закладывает необоснованно заниженное значение среднеквадратичной ошибки, взятое им из минимума параболы. Никаких специальных оценок этой ошибки Ю.Н. Ефремов почему-то не делает.
Кроме того, нетрудно оценить, что случайно моделируя поправку к координатам даже одной звезды, вероятность вернуться к ее истинному положению, вообще говоря, весьма мала. Это показывает следующий простой расчет. Предположим, что индивидуальная ошибка Птолемея для некоторой звезды составляет 45′ по дуге. Такая ошибка типична для Альмагеста. Значительное число звезд в Альмагесте измерено гораздо хуже [1339]. Подчеркнем еще раз, что речь идет об ошибке по дуге. Ошибки по широте, как мы покажем ниже, существенно меньше.
Из приведенного выше расчета, например, для Арктура, следует, что для того, чтобы смоделировать конкретную датировку, отличающуюся от истинной не более чем на 400 лет, необходимо «попасть» в 14-минутную окрестность истинного положения звезды. Причем, при условии, что звезды окружения уже попали в нужные положения, и существенных возмущений в датировку не вносят. Вероятность попадания в 14-минутную окрестность из положения, сдвинутого на 45′, можно оценить сверху вероятностью попадания в заштрихованный сектор на приведенном рис. 3.13а.
Считая вероятность попадания возмущенной точки в круг радиуса 60′ с центром в точке А, равным 1, получаем, что вероятность попадания в заштрихованный сектор не превосходит 0,1. Таким образом, даже в этом идеальном случае вероятность случайного получения даже не истинной даты, а всего лишь даты, отличающейся от истинной не более чем на 400 лет, имеет порядок 0,1. Ю.Н. Ефремов же считает, что порог вероятности 0,2 уже достаточен, чтобы отвергнуть датировки после 900 года как невероятные.
Авторы [274] заявляют, будто результаты вычислений по другим быстрым звездам, — почему-то не приведенные в их работе, — подтверждают выводы, основанные на исследовании о2
Эридана и Арктура. Однако это заявление не соответствует действительности.