В действительности же реальная точность положения Арктура в Альмагесте может оказаться существенно хуже 14′, а тусклые звезды окружения могли быть измерены еще хуже. Здесь мы, конечно, имеем в виду ошибку по дуговому расстоянию. Как мы увидим ниже, широта Арктура в Альмагесте измерена достаточно хорошо. Но это ни в коей мере не относится к его долготе. См., в частности, исследования Роберта Ньютона [614]. Кроме того, нет никаких оснований предполагать, что Птолемей с хорошей точностью измерил какую-либо из координат тусклых звезд окружения. Следовательно, реальная точность «метода», описанного в работе [273] по Арктуру, значительно хуже 420 лет. Поэтому интервал возможных датировок Альмагеста по этому методу заведомо шире, чем интервал от 200 года до н. э. до 700 года н. э.
Прокомментируем теперь предлагаемый в работах [273], [274] метод моделирования случайных ошибок координат для оценки точности полученной даты. Например, для датировки по Арктуру этот «метод» привел Ю.Н. Ефремова к выводу, что его датировка Альмагеста примерно 300-м годом н. э. имеет точность ±300–400 лет [273], с. 311; [274], с. 181.
Для целей датировки в [273], [274] используется метод наименьших квадратов. Приведенные выше элементарные вычисления показывают, что точность этого метода оценивается снизу величиной индивидуальной ошибки положения рассматриваемой быстрой звезды в Альмагесте, деленной на скорость ее собственного движения.
Для повышения точности своих выводов, Ю.Н. Ефремов применяет метод моделирования случайных ошибок Альмагеста. Точность предлагаемого им метода моделирования, состоящего в многократном возмущении координат звезд из Альмагеста некоторой случайной величиной, «сравнимой» с точностью каталога, в работах Ю.Н. Ефремова не оценивается. Между тем этот метод будет работать лишь в том случае, если в результате случайных возмущений координаты звезд из Альмагеста станут близкими к истинным координатам с «заметной» вероятностью. Но в результате влияния упомянутой выше индивидуальной ошибки такое попадание в окрестность истинных координат, скорее всего, будет иметь малую вероятность. В любом случае эту вероятность следует оценить. В работе [274] нет и намека на подобные оценки. Вообще, с точки зрения математической статистики, предлагаемые авторами работ [273], [274] «методы» не выдерживают критики.
«Метод моделирования датировок», предложенный Ю.Н. Ефремовым сводится к следующему. Берется некоторое окружение быстрой звезды, например, Арктура. Методом наименьших квадратов определяется дата, дающая минимум среднеквадратичного отклонения совокупности взаимных расстояний звезд в Альмагесте от совокупности тех же величин в реальной, изменяющейся со временем конфигурации звезд на небе. Эта дата берется в качестве оценки истинной, неизвестной нам даты составления каталога. Ю.Н. Ефремов обозначает ее Т0
.Далее, достигнутый минимум среднеквадратичного отклонения почему-то объявляется оценкой для дисперсии локальной ошибки в каталоге Альмагеста. Ю.Н. Ефремов так и говорит: «По-разному группируя те же n звезд, получим ряд оценок ελβ
. Они не являются независимыми, поэтому вместо осреднения мы выбираем из них максимальную, и будем считать ее оценкой локальной ошибки определения координат в каталоге Альмагеста» [273], с. 311.Спрашивается, почему? Во-первых, локальную ошибку Альмагеста надо оценивать отдельно. Такая оценка необходима, чтобы понять — какую вариацию минимального уровня мы должны допустить, чтобы надежно «захватить» истинную дату составления каталога. Беря в качестве оценки для дисперсии само минимальное значение, Ю.Н. Ефремов по сути дела вообще не допускает вариации минимума.
Во-вторых, слишком малый объем выборки (порядка 5–6 независимых наблюдений), по которой усредняется данная величина, не позволяет считать предлагаемую Ю.Н. Ефремовым оценку достаточно надежной. Такая оценка будет слишком подвержена случайным возмущениям. Оценку локальной ошибки следует получать по гораздо большему количеству звезд.
Далее, Ю.Н. Ефремов моделирует случайные возмущения птолемеевских координат на основе «определенной» им локальной ошибки. Он пишет: «Зная ошибку ελβ
в каждой группе, можно численным экспериментом изучить влияние случайных ошибок координат на определение Т0. Смоделируем поправки к координатам звезд в каталоге Альмагеста, считая, что эти поправки распределены по нормальному закону со средним, равным нулю, и средней квадратической ошибкой ελβ в каждой группе, и определим соответствующее значение Т0. Повторив эту процедуру 100 раз, построим распределение найденных оценок Т0» [273], с. 312. Далее Ю.Н. Ефремов пишет: «Общий для всех групп интервал с учетом средних квадратических ошибок эпох Т0 — это I век до н. э.» [273], с. 313. Ю.Н. Ефремов делает также следующее «замечательное» утверждение: «Вероятность случайно получить значение Т0 больше 900 достигает значения 0,2 только в группе с наибольшей дисперсией. Следовательно, каталог Альмагеста с очень большой вероятностью не является средневековой подделкой» [274], с. 188–189.