0.3. По значению систематической ошибки нельзя датировать каталог
Дадим теперь несколько иную интерпретацию найденных значений γstat
и φstat. Пользуясь значениями координат звезд (на самом деле, достаточно рассмотреть лишь широты), легко определяются полюса эклиптики РА (для изучаемого каталога) и P(t) (для расчетного каталога на момент t), рис. 5.b.Очевидно, что дуговое расстояние между РА
и P(t) равно в точности γstat и компенсация систематической ошибки есть не что иное, как совмещение этих полюсов. Теперь посмотрим, как эта картина меняется со временем. Поскольку движение P(t) происходит в пределах одного градуса, можно воспользоваться плоской картинкой и предположить равномерность движения Р(t), см. рис. 5.b.Скорость v этого равномерного движения нетрудно подсчитать, зная значения γstat
в двух различных точках. Тогда легко найти момент t*, когда положение истинного полюса ближе всего отстоит от положения полюса каталога. На первый взгляд может показаться, что следует объявить этот момент искомой датировкой, вычисленной, кстати, обработкой значений координат большого количества звезд. Однако, как мы уже выяснили, логика эта неправильная и датировать каталог моментом t* нельзя. В самом деле, если возможная систематическая ошибка в определении эклиптики Птолемеем может достигать величины δ, то все моменты времени, отвечающие прохождению полюса P(t) через круг радиуса δ с центром в точке РА, должны рассматриваться как возможные кандидаты на время датировки. Но величину δ мы не знаем. Конечно, мы можем ее оценить, но лишь при условии, что нам известна датировка каталога. При другой предполагаемой датировке величина оценки будет другой. Таким образом, предполагаемая датировка уже заложена в оценке данной величины.Поэтому, в зависимости от сделанной Птолемеем систематической ошибки, то есть ошибки в определении эклиптики, момент t* может оказаться либо более ранним, чем истинная дата составления каталога, либо более поздним. В первом случае каталог (вернее, та его часть, для которой ищется γstat
) «удревняется» — он, попросту, становится похож на каталог, составленный в году t*. Во втором случае, если t* — момент более поздний, чем истинная дата составления, — каталог омолаживается. Мы увидим далее, что обе эти возможности реализованы в Альмагесте. Однако, слова «удревняется» и «омолаживается» относятся к каталогу, в котором систематические ошибки не скомпенсированы. После их компенсации остается «рафинированный каталог», содержащий лишь случайные ошибки, среднеквадратичная величина которых оценивается значением σmin, но индивидуальные значения оценить невозможно.Перейдем теперь к более подробной реализации изложенной выше общей идеи.
1. Основные обозначения
Начиная с этой главы, мы считаем, что имеем дело с каталогом, все звезды которого имеют единственное отождествление со звездами из современного каталога. В соответствии с этим, будем идентифицировать звезды индексом i и обозначать через li
, bi, соответственно эклиптикальные долготу и широту i-й звезды в Альмагесте. Через Li(t), Bi(t) мы обозначим истинные долготу и широту i-й звезды в эпоху t. Напомним, что время t мы отсчитываем от 1900 года «назад» и измеряем в столетиях, то есть, например, t = 3,15 соответствует году 1900 — 3,15 × 100 = 1585 году н. э., а t = 22,0 отвечает году 1900 — 22 × 100 = 300 году до н. э.Пусть tА
— неизвестное нам время составления каталога Альмагеста. Обозначим через LAi, BAi истинные долготу и широту i-й звезды в год составления каталога, то есть LAi = Li(tА), BAi = Bi(tА)· Пусть ΔBi(t) = Bi(t) — bi — разность между истинной широтой i-й звезды в момент времени t и ее широтой в Альмагесте. Назовем величину ΔBi(t) широтной невязкой на момент времени t. Эта величина имеет смысл погрешности в определении широты i-й звезды Альмагеста при условии, что он составлен в эпоху t. Естественно, что ΔBi(tA) = ΔBAi представляет собой истинную погрешность в определении широты.Как уже отмечалось в главе 3, в случае с Альмагестом приходится анализировать лишь широтные ошибки. Причины этого подробно разъяснены выше.
2. Параметризация групповых и систематических ошибок