Читаем Космические рубежи теории относительности полностью

РИС. 11.17. «Голая» керровская сингулярность. Если чёрная дыра вращается настолько быстро, что а > М, оба горизонта событий исчезают, открывая для обозрения «голую» сингулярность. Космонавты могут путешествовать сквозь кольцевую сингулярность, разграничивающую нашу Вселенную и мир антигравитации.

Поскольку реальные чёрные дыры должны вращаться и поэтому их следует описывать с помощью геометрии Керра, поучительно проанализировать решения Керра поподробнее. В следующей главе мы специально уделим внимание тому, что увидят астрономы и космонавты при наблюдении и исследовании вращающихся чёрных дыр.

12 ГЕОМЕТРИЯ РЕШЕНИЯ КЕРРА

Астрофизики-теоретики часто сталкиваются в своих математических построениях с разными возможностями. Они могут облегчить или, наоборот, усложнить себе жизнь, если представят рассматриваемые уравнения в удобном для работы или, напротив, в громоздком виде. И это особенно верно по отношению к анализу геометрии вращающихся чёрных дыр.

При описании геометрии пространства в окрестностях керровской чёрной дыры физики могут по-разному выбирать способы для описания положения точек в этой окрестности. Речь идет о выборе системы координат, т.е. попросту о выборе сетки, которая покрывает пространство. Например, физик может ввести прямоугольные декартовы координаты. Такие координаты, изображенные в левой стороне рис. 12.1, выглядят как линии на обычной миллиметровке. Положение точки задаётся в прямоугольных координатах посредством указания расстояний в направлениях вверх-вниз и налево-направо.

РИС. 12.1. Разные системы координат (слева - декартовы прямоугольные, в середине - полярные, справа - эллипсоидальные). Система координат - это всего лишь сетка, с помощью которой определяют положение точек в пространстве. Для вращающихся чёрных дыр удобно выбрать эллипсоидальные координаты (они получаются при вращении правого рисунка вокруг его оси симметрии). Такая система координат лучше всего отражает особенности геометрии решения Керра.

Однако было бы весьма неразумно, если бы для описания пространства вблизи чёрной дыры физик выбрал прямоугольные декартовы координаты. Такие координаты удобны, чтобы описывать тела, которые сами обладают прямыми углами, а чёрные дыры совсем не похожи на кирпичи. Прямоугольные координаты не отражают свойств симметрии чёрных дыр, и физик не получит с их помощью удобных для работы уравнений.

Второй возможный выбор состоит в использовании полярных (или сферических) координат. В центре рис. 12.1 показан пример подобных координат с центром в некоторой выбранной точке. Положение другой точки задаётся в этих координатах расстоянием от центра и величиной угла.

Сферические координаты (т.е. полярные, обобщенные на три измерения) предпочтительны во всех тех случаях, когда имеет место сферическая симметрия. Шварцшильдовские чёрные дыры и чёрные дыры Райснера-Нордстрёма обладают сферической симметрией. Поэтому сферические координаты идеально подходят для описания пространства решений Шварцшильда и Райснера-Нордстрёма, так что в сферических координатах уравнения принимают тогда особенно простой вид.

Если для сферически симметричных чёрных дыр сферические координаты превосходно себя оправдывают, то они оказываются уже не столь удобными в случае решения Керра. Вращающаяся чёрная дыра не является сферически симметричной. У неё существует привилегированное направление - ось вращения, вокруг которой она вращается. Чтобы работать с решением Керра, физикам необходимо выбрать такую систему координат, которая наиболее полно отражает геометрию вращающейся чёрной дыры; в противном случае придется иметь дело со слишком сложными уравнениями.

Имеется ещё одна система координат, как будто специально придуманная для решения Керра. Для случая двух измерений эти координаты называются эллиптическими и изображены справа на рис. 12.1. По сути дела, положения точек определяются здесь заданием расстояния от прямой и величиной некоторого угла. Кривые равного расстояния от прямой - это эллипсы, а кривые постоянного угла - гиперболы. Можно сказать, что эллиптические координаты - это полярные координаты, у которых центр (начало координат) вытянут в линию.

Чтобы прийти к системе трёхмерных координат, удобной для работы с решением Керра, представим себе, что мы вращаем эллиптические координаты вокруг оси симметрии. Эллипсы становятся тогда эллипсоидами вращения, а гиперболы - гиперболоидами. Концы отрезка линии, находившегося в центре, вычертят кольцо. У нас получилась трёхмерная система координат, которые называются сплющенными эллипсоидальными координатами; они изображены на рис. 12.2.

Перейти на страницу:

Похожие книги