Читаем Курс теоретической астрофизики полностью

Для объяснения таких результатов мы должны считать, что интенсивность излучения звезды не может быть представлена формулой Планка с одной и той же температурой во всех участках спектра. Кроме того, различия в температурах, определённых по линиям разных атомов, могут быть вызваны неполным поглощением туманностью излучения звезды за границами основных серий некоторых атомов. В последнем случае, как было выяснено выше, уравнение (22.29) даёт заниженные значения температуры.

При практическом применении изложенного метода определения температур звёзд большая трудность состоит в нахождении величин Ai из сравнения спектров туманности и звезды. Поэтому значительный интерес представляет возможность определения T* по отношению интенсивностей линий двух каких-либо атомов в спектре туманности. Очевидно, что в этом случае величина T*, по существу, находится из сравнения между собой участков спектра звезды за границами основных серий этих атомов.

Впервые указанная возможность была использована В. А. Амбарцумяном, предложившим определять температуру звезды по отношению интенсивностей линий H водорода и 4686 A ионизованного гелия в спектре туманности. Чтобы связать это отношение с величиной T*, мы можем воспользоваться уравнением (22.29), написав его сначала для водорода, а затем для ионизованного гелия. При этом в правой части уравнения (22.29) в первом случае ограничимся линией H, а во втором — линией 4686 A. Соответствующие значения величины Q в обоих случаях будут близки между собой, так как атомы H и He подобны друг другу, а эйнштейновские коэффициенты вероятностей переходов 4->2 и 4->3 (при которых излучаются рассматриваемые линии) почти одинаковы. Поэтому, разделив одно из упомянутых уравнений на другое, мы приближённо (с точностью до множителя, близкого к единице) получаем


4x

x

x^2 dx

ex-1

4x

x^2 dx

ex-1

=

EH

E4686


(22.30)


где x — величина, определённая формулой (22.26) для водорода.

Температуры звёзд, определённые при помощи уравнения (22.30), оказываются весьма высокими. Например, для ядра туманности NGC 7009 была получена температура 115 000 K. По-видимому, столь высокие значения температур объясняются в основном неполным поглощением туманностью излучения звезды за границей лаймановской серии. Такое объяснение кажется вероятным потому, что в туманностях, в которых дважды ионизован гелий, должен быть в сильной степени ионизован водород. Вследствие этого оптическая толщина туманности за границей серии Лаймана может быть меньше единицы.

Для определения температур звёзд по эмиссионным линиям в спектрах туманностей могут быть использованы линии не только водорода, гелия и ионизованного гелия, но и других атомов (N III, C IV и т.д.). Вместо температур можно также определять просто числа квантов, излучаемых звездой за границами основных серий атомов. При этом для атомов с небольшими потенциалами ионизации (H, He) необходимо учитывать возможность неполного поглощения туманностью таких квантов. Кванты за границами основных серий атомов с большими потенциалами ионизации обычно поглощаются туманностью полностью. Таким образом, по интенсивностям эмиссионных линий разных атомов в видимой части спектра туманности мы можем найти распределение энергии в далёкой ультрафиолетовой области спектра звезды.

6. Определение температур звёзд по линиям «небулия».

Как уже упоминалось, рассмотренный выше механизм свечения газовых туманностей (фотоионизации с последующими рекомбинациями) не является единственным. Наряду с ним в туманностях действует другой механизм, вызывающий свечение в главных небулярных линиях N и N, а также в других линиях «небулия».

Тот факт, что свечение туманностей в линиях N и N происходит не в результате фотоионизаций, доказывается следующими соображениями:

1. Если бы кванты в линиях N и N возникали за счёт излучения звезды за границей основной серии дважды ионизованного кислорода, то температуры звёзд были бы чрезвычайно высоки, в некоторых случаях свыше миллиона кельвинов.

2. Имеется ряд планетарных туманностей, в спектрах которых нет линий ионизованного гелия, что объясняется слабостью излучения ядер за границей основной серии этого иона. Если бы линии N и N возникали вследствие фотоионизации, то в данном случае они также отсутствовали бы, так как потенциалы ионизации He и O почти совпадают. Однако линии N и N в спектрах всех планетарных туманностей являются наиболее интенсивными.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука