Читаем Курс теоретической астрофизики полностью

В таблице 39 приведены значения бальмеровского скачка 𝐷 в зависимости от электронной температуры 𝑇𝑒 и величины 𝐶/Ba𝑐, представляющей собой отношение интенсивности дополнительного непрерывного спектра к интенсивности непрерывного спектра, обусловленного рекомбинациями и свободно-свободными переходами, за границей бальмеровской серии. При 𝐶=0 бальмеровский скачок вычислен по формуле (26.10). Из таблицы видно, как возрастает величина 𝐷 с увеличением величины 𝐶/Ba𝑐 при постоянной электронной температуре.


Таблица 39


Бальмеровский скачок 𝐷


(с обратным знаком)


𝑇

𝑒

, K


𝐶

Ba𝑐


0

0,1

0,2

0,3


5 000

2,34

1,02

0,77

0,63


7 500

1,68

0,96

0,73

0,61


10 000

1,31

0,87

0,68

0,57


15 000

0,93

0,70

0,57

0,49


20 000

0,72

0,58

0,49

0,42


25 000

0,60

0,49

0,42

0,37


30 000

0,51

0,41

0,36

0,32


40 000

0,38

0,33

0,29

0,26


Изучая непрерывный спектр туманности Ориона, Гринстейн из наблюдений нашёл, что 𝐷=-0,64. Если считать, что величина 𝐷 определяется формулой (26.10), то, как следует из табл. 39, электронная температура будет равна 𝑇𝑒=22 000 K. Такая электронная температура слишком высока для туманности. Чтобы при найденном значении 𝐷 получить 𝑇𝑒=12 000 K., надо принять 𝐶/Ba𝑐.

Из сказанного вытекает, что происхождение непрерывного спектра газовых туманностей не может быть объяснено только рекомбинациями и свободно-свободными переходами. В части диффузных туманностей некоторую роль в создании непрерывного спектра играет пыль, рассеивающая излучение звёзд. Однако в планетарных туманностях пыль, по-видимому, не содержится в больших количествах.

Добавочный механизм возникновения непрерывного спектра чисто газовых туманностей будет указан ниже.

2. Двухфотонное излучение.

Из каждого возбуждённого состояния атома, кроме спонтанных переходов с излучением одного кванта, возможны также спонтанные переходы с излучением двух квантов. Обычно вероятность первых переходов (одноквантовых) гораздо больше вероятности вторых (двухквантовых). Однако в случае метастабильных состояний, из которых вероятность всех одноквантовых переходов мала, положение может стать обратным. В частности, так обстоит дело с метастабильным состоянием 2𝑠 водорода. Как показывают подсчёты, переход 2𝑠→1𝑠 более вероятен с излучением двух квантов, чем одного.

Энергии квантов, излучаемых при двухквантовом переходе 2𝑠→1𝑠, могут быть произвольными, но сумма их постоянна и равна, очевидно, энергии Lα-кванта. Таким образом, при двухквантовых переходах излучается энергия в непрерывном спектре. В газовых туманностях после фотоионизаций, рекомбинаций и каскадных переходов значительная часть атомов водорода попадает в метастабильное состояние 2𝑠. Как мы знаем, условия в туманностях таковы, что ни излучение, ни столкновения не выводят атомы из метастабильных состояний (или выводят весьма редко). Поэтому атомы водорода, попавшие в состояние 2𝑠, в большинстве случаев (если плотность не очень велика) совершают переходы в состояние 1𝑠 с излучением квантов в непрерывном спектре. Значительная роль таких процессов в образовании непрерывного спектра газовых туманностей была впервые указана в работах Спицера и Гринстейна и независимо от них А. Я. Киппера [7].


Таблица 40


Величины ψ(𝑦) и 𝑦ψ(𝑦),


характеризующие двухфотонное излучение


𝑦

λ(Å)

ψ(𝑦)

𝑦ψ(𝑦)


0,00


0

0


0,05

24 313

1,725

0,0863


0,10

12 157

2,783

0,2783


0,15

8 105

3,481

0,5222


0,20

6 078

3,961

0,7922


0,25

4 862

4,306

1,077


0,30

4 052

4,546

1,363


0,35

3 473

4,711

1,649


0,40

3 039

4,824

1,929


0,45

2 702

4,889

2,200


0,50

2 431

4,907

2,454


Обозначим частоты двух квантов, излучаемых при переходе 2𝑠→1𝑠, через 𝑦ν₁₂ и (1-𝑦)ν₁₂ где ν₁₂ — частота Lα и 𝑦 — любое число от нуля до 1. Пусть 𝐴(𝑦)𝑑𝑦 — коэффициент вероятности перехода, связанного с излучением кванта в интервале частот от ν₁₂𝑦 до ν₁₂(𝑦+𝑑𝑦). Представляя величину 𝐴(𝑦) в виде


𝐴(𝑦)

=

9α⁶ν₀

2¹⁰

ψ(𝑦)

,


(26.11)


где ν₀ — частота ионизации водорода и α=2π𝑒²/ℎ𝑐 — постоянная тонкой структуры, названные авторы получили для функции ψ(𝑦) значения, приведённые в табл. 40. Так как ψ(𝑦)=ψ(1-𝑦), то 𝑦 в таблице меняется только от нуля до ½. Энергия, излучаемая в единичном интервале частот, пропорциональна величине ℎν𝐴(𝑦) или 𝑦ψ(𝑦). Значения функции 𝑦ψ(𝑦) также даны в таблице. Эйнштейновский коэффициент двухквантового перехода 2𝑠→1𝑠 равен


𝐴

2𝑠,1𝑠

=

1

2


1

0

𝐴(𝑦)

𝑑𝑦

=

8,227 с⁻¹

.


(26.12)


При помощи величины 𝐴(𝑦) можно легко написать выражение для объёмного коэффициента излучения εν, обусловленного двухквантовыми переходами. Обозначим через 𝑛2𝑠 число атомов водорода в состоянии 2𝑠 в 1 см³. Тогда, очевидно, имеем


4πε

ν

𝑑ν

=

𝑛

2𝑠

𝐴(𝑦)

𝑑𝑦

ℎν

,


или


ε

ν

=

𝑛

2𝑠

𝐴(𝑦)

𝑦

.


(26.13)


Чтобы найти величину 𝑛2𝑠, надо составить уравнение стационарности для состояния 2𝑠. Атомы водорода попадают в состояние 2𝑠 после рекомбинаций и последующих каскадных переходов. Обозначим через 𝑋 долю всех рекомбинаций на высокие уровни, начиная со второго, которые приводят к появлению атомов в состоянии 2𝑠. Тогда число переходов в состояние 2𝑠 в 1 см³ за 1 с будет равно


𝑋

𝑛

𝑒

𝑛⁺

2

𝐶

𝑖

(𝑇

𝑒

)

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос