Как мы уже видели, основная часть усилий в квантовой теории поля затрачивается на решение классических уравнений движения для отыскания нормальных мод, описание которых не выходит за рамки классической физики. Последующее «квантование» в сущности заключается лишь в дополнительном утверждении, что каждая из нормальных мод — квантовый осциллятор с уровнями энергии h(n+ 1/2 ). Изложенная таким образом квантовая теория поля оказывается лишь частным следствием уравнения Шрёдингера, а не какой-то сверхтеорией, объясняющей все.
Так будет и так должно быть в любом случае, когда переменные самого поля (подобно звуковым волнам или давлению) в итоге выражаются только лишь через некоторые комбинации основных механических переменных. Эти основные переменные описывают положения частиц (атомов, электронов, ядер и т. д.), реально образующих среду, в которой возбуждается поле. Например, рассматривая звуковые процессы, мы предполагаем, что уравнение Шрёдингера описывает движение элементов структуры вещества, т.е. атомов в кристалле. Отсюда ясно, что длинноволновые звуковые колебания подчиняются классическим линейным уравнениям поля, в то время как моды оказываются квантованными.
В немногих случаях классические уравнения полей относятся к таким (давно известным) системам, для которых квантовомеханическое исследование на основе уравнения Шрёдингера до сих нор ещё не проделано. Например, применив классическую аналогию, можно получить уравнения для колебательного описания ядерной материи [5]. Превосходная идея о том, что моды поля можно в этом случае рассматривать как квантовые осцилляторы, позволила составить и решить квантовые уравнения. Таких примеров в физике осталось немного.
В квантовой механике имеется и другой тип уравнений, принципиально отличный от всех рассмотренных выше. Примером может служить система линейных уравнений Максвелла для электромагнитного поля. Эта система приводит к волновому уравнению, вполне аналогичному тому, что мы уже вывели для звука, однако в этом случае имеют место совершенно другие поляризационные свойства. Подобно тому, как в трубе органа образуются стоячие волны, электромагнитное поле в замкнутом объёме также имеет, если его рассматривать классически, набор фундаментальных мод. Отсюда естественно предположить, что эти колебания квантованы и каждая мода определяется энергетическим уровнем, превышающим основное состояние системы на E=hn и т.д. Это — основное предположение квантовой электродинамики. Нельзя сказать, что такой вывод строго следует из уравнения Шрёдингера, потому что электромагнитное поле не понимается здесь в смысле длинноволнового приближения к среде, имеющей атомную структуру. Сегодня мы уже не думаем о какой-то специальной среде для подобного рассмотрения электромагнитного поля, а считаем, что уравнения Максвелла описывают некий фундаментальный закон природы. Мы просто предполагаем, что они квантуются и именно тем простым способом, который описан выше. В гл. 9 обсудим этот вопрос более подробно.
Гипотеза о квантуемости электромагнитных полей согласуется со всеми экспериментами, проделанными до сих пор, хотя здесь имеются и некоторые теоретические трудности. Они связаны с необходимостью распространения этой схемы на моды, соответствующие очень малым длинам волн. При этом возникают различные эффекты, которые приводят к расходимости интегралов, если интегрирование по длинам волн распространяется вплоть до нуля. Подобные же трудности появляются и в рассмотрении вибраций кристалла при попытке исследовать область очень коротких волн, где длины их оказываются сравнимы с межатомными расстояниями, т.е. когда приближение непрерывности уже непригодно. Тогда мы просто отказываемся от такого приближения и этим ограничиваем число нормальных мод в кристалле конечного объёма; в то же время в электродинамике количество мод в любом объёме бесконечно.