Читаем Квантовая механика и интегралы по траекториям полностью

Следующий шаг, очевидно, состоит в размещении между источником и отверстиями все большего и большего числа экранов, причём каждый из них должен сплошь покрываться отверстиями. Продолжая этот процесс, мы будем все более уточнять траекторию электрона, пока, наконец, не придём к вполне разумному выводу, что траектория является просто определённой функцией высоты от расстояния, т.е. 𝑥=𝑥(𝑦). При этом мы должны применять принцип суперпозиции до тех пор, пока не получим интеграл от амплитуды по всем траекториям.

Теперь можно дать значительно более точное описание движения. Мы можем не только представить себе определённую траекторию 𝑥=𝑥(𝑦) в пространстве, но и точно указать момент времени, в который проходится каждая пространственная точка. Следовательно, траектория (в нашем двумерном случае) будет задана, если известны две функции: 𝑥(𝑡) и 𝑦(𝑡). Таким образом, мы приходим к представлению об амплитуде, соответствующей определённой траектории 𝑥(𝑡), 𝑦(𝑡). Полная амплитуда вероятности попадания в конечную точку представляет собой сумму или интеграл от этой амплитуды по всем возможным траекториям.

Задаче более точного математического определения такого понятия суммы или интеграла по всем траекториям будет посвящена гл. 2.

Там же мы получим выражение амплитуды вероятности для любой заданной траектории. После того как это выражение найдено, законы нерелятивистской квантовой механики оказываются полностью установленными и останется лишь продемонстрировать их применение в ряде интересных специальных случаев.

§ 5. Над чем ещё следует подумать

Мы увидим, что в квантовой механике амплитуды φ являются решениями строго детерминистского уравнения, уравнения Шрёдингера в том смысле, что если амплитуда φ известна в момент времени 𝑡 = 0, то мы будем знать её и во все последующие моменты времени. Истолкование же |φ|² как вероятности события — индетерминистское. Оно означает, что нельзя точно предсказать результат эксперимента. Весьма примечательно, что такое истолкование не приводит к каким-либо внутренним противоречиям. Это было показано Гейзенбергом, Бором, Борном, Нейманом и многими другими физиками на примере огромного количества частных случаев. Однако, несмотря на все эти исследования, нельзя считать доказанным, что такие противоречия никогда не смогут возникнуть. По этой причине квантовая механика кажется новичку трудной и до некоторой степени таинственной дисциплиной. Тайна постепенно уменьшается по мере того, как разбирается все большее число примеров, но никогда не исчезает полностью ощущение, что у этого предмета есть что-то необычное.

Существует несколько проблем, связанных с интерпретацией, над которыми можно было бы ещё поработать. Эти проблемы трудно изложить, пока они ещё полностью не разработаны. Одна из них — это доказать, что вероятностная интерпретация функции φ является единственной последовательной интерпретацией этой величины. Мы и наши измерительные средства составляем часть природы и, следовательно, должны в принципе описываться функцией, удовлетворяющей детерминистскому уравнению. Почему же мы можем предсказать лишь вероятность того, что данный эксперимент приведёт к некоторому определённому результату? Откуда возникает неопределённость? Почти нет сомнения, что она возникает из необходимости усиливать эффекты одиночных атомных событий до уровня, доступного наблюдению с помощью больших систем. Детали же должны изучаться только на основе предположения, что |φ|² есть вероятность, а последовательность этой гипотезы уже доказана. Было бы интересно показать, что нельзя предложить никакого другого последовательного истолкования этой величины.

Другие вопросы, которые можно было бы изучать, связаны с теорией познания. На первый взгляд кажется, что в нашем описании мира нет симметрии по оси времени, и наше знание прошлого качественно отличается от знания будущего. Почему нам доступна только вероятность будущего события, в то время как достоверность прошедшего события часто может считаться очевидной? Эти вопросы следует проанализировать более тщательно. Впрочем, чтобы внести ясность, может быть, стоит сказать несколько больше. Видимо, здесь мы снова сталкиваемся с последствиями макроскопических размеров нас самих и наших приборов. На самом деле не должно быть обычного разделения на наблюдаемого и наблюдателя, применяемого нами сейчас при анализе измерений в квантовой механике; этот вопрос требует обстоятельного изучения. Что, по-видимому, действительно нужно,— это статистическая механика макроскопических приборов, усиливающих изучаемый эффект.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука