Читаем Квантовая механика и интегралы по траекториям полностью

Первый множитель здесь определяет сдвиг энергии. Второй множитель легко интерпретировать как вероятность того, что через время 𝑇 система по-прежнему будет пребывать в состоянии 𝑚; эта вероятность равна λ𝑚𝑚=exp(-γ𝑇) и убывает со временем, так как в каждый момент времени имеется определённая вероятность перехода системы из состояния 𝑚 в некоторое другое состояние. Это означает, что для полной согласованности следует допустить, что величина γ является полной вероятностью (в расчёте на единицу времени) перехода из состояния 𝑚 в некоторое состояние, принадлежащее непрерывному спектру при той же самой энергии. Из уравнения (6.118) следует, что


γ=

 

𝑘

2πδ

(𝐸

𝑚

-𝐸

𝑘

)

|𝑉

𝑚𝑘

.


(6.120)


Итак, мы видим, что полная вероятность, отнесённая к единице времени, в точности совпадает с суммой в формуле (6.87), взятой по всем допустимым конечным состояниям (допустимым в рассматриваемом приближении по 𝑉.

Величина, обратная γ, называется средним временем жизни состояния. Строго говоря, состояние с конечным временем жизни не имеет определённой энергии. В соответствии с принципом Гейзенберга неопределённость энергии Δ𝐸=(ℏ/время жизни) т.е. Δ𝐸=γ.

Если поставить эксперимент для определения различия энергий двух уровней, каждый из которых имеет ширину γ, то мы обнаружим, что резонанс не является острым, а имеет сглаженную форму. Центр резонансного пика определяет разность энергий, а его ширина — сумму значений γ для данных двух уровней.

Глава 7


МАТРИЧНЫЕ ЭЛЕМЕНТЫ ПЕРЕХОДА

В гл. 6, рассматривая вопросы, связанные с изменением состояний квантовомеханической системы, мы развивали общие представления теории возмущений. В связи с этим мы рассмотрели и исследовали системы, основное состояние которых описывается постоянным во времени гамильтонианом. Теперь продолжим изучение метода теории возмущений и обобщим его на случай систем, у которых невозмущённое состояние описывается гамильтонианом, изменяющимся со временем. С этой целью введём более общие обозначения и попытаемся несколько шире рассмотреть вопрос о том, каким образом происходит изменение состояния квантовомеханической системы. Эти новые обозначения будут введены в переменные и некоторые специальные функции, так называемые матричные элементы перехода.

Всю эту главу можно разделить на четыре части. Вначале дадим определение амплитуд и матричных элементов перехода на основе теории возмущений, развитой в гл. 6. Во второй части, охватывающей § 2—4, сформулируем некоторые представляющие общий интерес соотношения для матричных элементов перехода. В третьей части (§ 5) покажем, как связаны между собой матричные элементы перехода, определённые с помощью интегралов по траекториям, и величины, описывающие то же явление, но определённые с помощью обычных квантовомеханических операторов. Наконец, в последней части (§ 6 и 7) применим результаты предыдущих параграфов к решению двух частных интересных квантовых задач.

§ 1. Определение матричных элементов перехода

Изменение квантовомеханической системы во времени можно представить себе следующим образом. В начальный момент 𝑡1 состояние описывается волновой функцией ψ(𝑥1,𝑡1). В более поздний момент времени 𝑡2 это начальное состояние переходит в состояние ψ(𝑥2,𝑡2).

Предположим, что в момент 𝑡2 мы задаём вопрос: какова вероятность найти систему в некотором состоянии χ(𝑥2,𝑡2)? Как мы знаем из общих соображений, развитых в гл. 5, вероятность того, что система будет находиться в определённом состоянии, пропорциональна квадрату модуля амплитуды, определяемой интегралом


χ*(𝑥

2

,𝑡

2

)

φ(𝑥

2

,𝑡

2

)

𝑑𝑥

2


Из гл. 3 нам также известно, что функция φ может быть выражена через начальную волновую функцию с помощью ядра 𝐾, описывающего движение системы в интервале между моментами времени 𝑡1 и 𝑡2. Поэтому при отыскании вероятности пребывания системы в каком-то определённом состоянии можно исходить из начальной волновой функции φ, учитывая зависимость от времени с помощью ядра 𝐾(2,1).

Результирующую амплитуду, абсолютная величина которой даёт искомую вероятность, назовём амплитудой перехода и обозначим её так:


⟨χ|1|ψ⟩

=

∫∫

χ*(𝑥

2

)

𝐾(2,1)

ψ(𝑥

1

)

𝑑𝑥

2

𝑑𝑥

1

.


(7.1)


При описании процесса перехода для нас было бы сейчас предпочтительнее вернуться к более общим обозначениям. Введём для этого снова функцию действия 𝑆, описывающую поведение системы в интервале между двумя моментами времени, и запишем амплитуду перехода в виде


⟨χ|1|ψ⟩

𝑆

=

𝑥2

𝑥1

χ*(𝑥

0

)

𝑒

𝑖𝑆/ℏ

ψ(𝑥

1

)

𝒟𝑥(𝑡)

𝑑𝑥

1

𝑑𝑥

2

.


(7.2)


Здесь мы применяем более точное обозначение, добавив в амплитуду перехода индекс 𝑆, чтобы указать величину действия, входящего в интеграл. Этот интеграл необходимо взять по всем траекториям, которые соединяют точки 𝑥1 и 𝑥2, результат умножить на две волновые функции и затем ещё раз проинтегрировать по всем пространственным переменным в указанных пределах.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука