Читаем Квантовая механика и интегралы по траекториям полностью

Первый шаг при вычислении этого интеграла в точности совпадает с тем, что мы делали в соотношениях (6.8) — (6.11) при вычислении ядра 𝐾(1). Выражение для интеграла по траекториям получается путём интегрирования по координатам обеих конечных точек 𝑥1 и 𝑥2 и по координатам промежуточной точки 𝑥3 [обозначенной в соотношении (6.10) через 𝑐]. Таким образом,


⟨|𝑉[𝑥(𝑡),𝑡]|φ⟩

𝑆0

=

χ*(𝑥

2

)

𝐾

0

(2,3)

𝑉(3)

𝐾

0

(3,1)

ψ(𝑥

1

)

𝑑𝑥

1

𝑑𝑥

2

𝑑𝑥

3

.


(7.10)


Мы получили это выражение, основываясь на трёх допущениях: во-первых, применили интегральное правило (3.42) для волновой функции; далее, для написания амплитуды мы взяли выражение (5.31), определяющее вероятность того, что система, находящаяся в каком-то определённом состоянии, может быть найдена и в некотором другом состоянии; наконец, для ядра, описывающего движение системы, употребили первое приближение теории возмущений (6.11). Все это в совокупности определяет матричный элемент перехода (7.10). Квадратмодуля этого выражения представляет собой вероятность того, что система, находившаяся в исходном состоянии ψ, может под действием малого возмущающего потенциала 𝑉(𝑥,𝑡) перейти далее в состояние χ (если это последнее не является состоянием системы при 𝑉=0, т.е. если ⟨χ|1|ψ⟩=0).

Соотношение (3.42) позволяет нам ввести сокращённые обозначения подобно тому, как это было сделано в соотношении (6.23) при переходе к выражению (6.25). Определим функцию ψ(𝑥3𝑡3) как


ψ(3)

=

𝐾

0

(3,1)

ψ(𝑥

1

)

𝑑𝑥

1

.


(7.11)


Это — волновая функция в момент 𝑡3, возникающая из начальной волновой функции в случае, когда нет возмущения. Аналогично определим функцию


χ*(𝑥

3

,𝑡

3

)

=

χ*(𝑥

2

)

𝐾

0

(2,3)

𝑑𝑥

2

,


(7.12)


комплексно сопряжённую волновой функции, которая (при отсутствии возмущения) в момент 𝑡3 будет совпадать с функцией χ(𝑥2) в момент 𝑡2 [см. уравнение (4.38) и задачу 4.7].

С помощью вновь введённых волновых функций член первого порядка теории возмущений можно записать более просто:


⟨χ|

𝑉[𝑥(𝑡),𝑡]

𝑑𝑥

|ψ⟩

𝑆0

=

∫∫

χ³(3)

𝑉(3)

ψ(3)

𝑑𝑥

3

𝑑𝑡

3

,


(7.13)


откуда видно, что амплитуда перехода, представленная в такой форме, является обобщением амплитуды перехода λ𝑚𝑛, введённой в § 5 гл. 6. Если волновые функции в правой части соотношения (7.13) являются собственными функциями, то результирующая амплитуда перехода будет просто совпадать с амплитудой λ¹𝑚𝑛, определяемой соотношением (6.70).

Таким образом, вычисление элемента перехода для функционала 𝐹[𝑥(𝑡)], зависящего от времени 𝑡 только через 𝑥(𝑡), как и вычисление интеграла по времени от такого функционала, не вызывает затруднений. Легко вычисляется и элемент перехода для функционалов, зависящих от функций 𝑥, определённых для двух разных моментов времени. Такая задача встречается, например, при рассмотрении члена второго порядка ряда теории возмущений. Этот член можно записать в виде


1

2ℏ²

⟨χ|σ²|ψ⟩

𝑆0

=

1

2ℏ²

∫∫

⟨χ|

𝑉[𝑥(𝑡),𝑡]

𝑉[𝑥(𝑠),𝑥]

|ψ⟩

𝑑𝑡

𝑑𝑠

.


(7.14)


Подынтегральное выражение в этом соотношении само по себе является матричным элементом перехода и может быть представлено как


⟨χ|

𝑉[𝑥(𝑡),𝑡]

𝑉[𝑥(𝑠),𝑠]

|ψ⟩

=


∫∫

χ*(4)

𝑉(4)

𝐾

0

(4,3)

𝑉(3)

ψ(3)

𝑑𝑥

3

𝑑𝑥

4

,


(7.15)


где мы обозначили 𝑡3=𝑠; 𝑡4=𝑡 для случая 𝑠<𝑡 и 𝑡3=𝑡; 𝑡4=𝑠 для 𝑠>𝑡.

Таким образом, член второго порядка в разложении теории возмущений имеет вид


1

2ℏ²

⟨χ|

𝑉[𝑥(𝑡),𝑡]

𝑑𝑡

𝑉[𝑥(𝑠),𝑠]

𝑑𝑠

|ψ⟩

=


=

∫∫

χ*(4)

𝑉(4)

𝐾

0

(4,3)

ψ(3)

𝑑𝑥

3

𝑑𝑡

3

𝑑𝑥

4

𝑑𝑡

4

,


(7.16)


что можно понимать как обобщение амплитуды перехода (6.74). Нетрудно написать также выражения, содержащие три или более функций.

Соотношение (7.4) соответствует и более общему виду теории возмущений. Для примера рассмотрим частицу, взаимодействующую с каким-либо осциллятором. После интегрирования по координатам осциллятора результирующую функцию действия можно написать как 𝑆0+σ, где (см. § 10 гл. 3)


σ=

1

𝑚ω sin 𝑚𝑇


𝑡2

𝑡1


𝑡

𝑡1

𝑔[𝑥(𝑡),𝑡]

𝑔[𝑥(𝑠),𝑠]

sin ω(𝑡

2

-𝑡)

sin ω(𝑠-𝑡

1

)

𝑑𝑠

𝑑𝑡

.


(7.17)


Функционал 𝑔[𝑥(𝑡),𝑡] здесь характеризует взаимодействие частицы и осциллятора; 𝑇=𝑡2-𝑡1.

Как уже отмечалось, практическое вычисление интегралов по траекториям, содержащих такую сложную функцию действия, очень затруднительно, однако если можно ожидать, что эффект, вызываемый сложным членом а, невелик, то искомый результат легко получить, разложив экспоненту (7.4) в ряд по возмущениям. Для иллюстрации найдём член первого порядка в таком разложении (т.е. первую борновскую поправку). Используя для δ выражение (7.17), можно вычислить член (𝑖/ℏ)⟨χ|δ|ψ⟩𝑆0, записав его в виде


𝑖

⟨χ|σ|ψ⟩

𝑆0

=

1

𝑚ω sin 𝑚𝑇


𝑡2

𝑡1


𝑡

𝑡1

⟨|

𝑔[𝑥(𝑡),𝑡]

𝑔[𝑥(𝑠),𝑠]

|ψ⟩

𝑆0

×


×

sin ω(𝑡

2

-𝑡)

sin ω(𝑠-𝑡

1

)

𝑑𝑠

𝑑𝑡

,


(7.18)


так что наиболее трудная часть задачи сводится к отысканию выражения ⟨χ|𝑔[𝑥(𝑡),𝑡]𝑔[𝑥(𝑠),𝑠]|ψ⟩𝑆0.

Но это выражение мы уже встречали в соотношении (7.15), с той лишь разницей, что вместо 𝑔 там стояло 𝑉. Поэтому мы можем написать


⟨χ|𝑔[𝑥(𝑡),𝑡]𝑔[𝑥(𝑠),𝑠]|ψ⟩

𝑆0

=


=

∫∫

χ*(4)

𝑔[𝑥(𝑡

4

),𝑡

4

]

𝐾

0

(4,3)

𝑔[𝑥(𝑡

3

),𝑡

3

]

ψ(3)

𝑑𝑥

3

𝑑𝑥

4

,


(7.19)


Подставив результат в соотношение (7.18), получим окончательное выражение для первой борновской поправки (𝑖/ℏ)⟨χ|σ|ψ⟩𝑆0.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука