Читаем Математические модели в естественнонаучном образовании полностью

Несмотря на то, что ранее это не указывалось, обсуждение темпов роста и стабильного распределения фактически требовало предположения о том, что . Если углубиться в этот вопрос, то придем к довольно существенному выводу: основные черты качественного поведения моделей – синтетического роста и стабильного распределения – являются независимыми от их собственного вектора. Только доминирующий собственный вектор и собственное значение говорят о наиболее важных особенностях модели. Этот результат иногда называют сильной эргодической теоремой для линейных моделей или, в контексте популяционных моделей, фундаментальной теоремой демографии.

Хотя определенные варианты значений  могут привести к , это происходит очень редко; для большинства вариантов  ожидается . Более того, во многих случаях можно доказать, что  для всех статистически значимых вариантов значений .

Пример. Рассмотрим модель Ашера для популяции с двумя классами стадий, заданными матрицей перехода .

Поскольку есть только два класса, можно сделать некоторые предположения относительно того, как должна измениться популяция. Обратите внимание, что каждая взрослая особь производит двух потомков, но только половина из них доживает до зрелого возраста. Если бы нижний правый элемент не был бы равен , можно было бы ожидать стабильного размера популяции, но небольшая часть взрослых особей, выживает после каждой итерации и, следовательно, размножаются снова, это должно привести к росту популяции. Поскольку доля взрослых особей, выживающих в течение дополнительного временного этапа, невелика, популяция, вероятно, будет расти медленно.

Воспользуемся компьютером для вычисления собственных векторов и собственных значений.

P=[0, 2; .5, .1]

[V,D]=eig(P)

Получим  , .

Это означает, что если задать первоначальную популяцию, которая здесь не была приведена, как  , для некоторых чисел  и  все будущие популяции будут предопределены следующим образом: .

Первое слагаемое срок здесь приведет к медленному росту, в то время как второе слагаемое уменьшается в размерах. Обратите внимание, что знак собственного значения во втором члене заставит числа в этом члене колебаться между отрицательными и положительными значениями постепенно приближаясь к нулю. Это означает, что если выберем любую начальную популяцию, рассчитаем будущие популяции и построим их график, то должны ожидать медленной экспоненциальной тенденции роста с наложенным на нее затухающим колебанием. Можно это увидеть на примере двух вариантов начальных векторов популяции на рисунке 2.3.



Рисунок 2.3. Две симуляции линейной модели обнаруживают схожие качественные характеристики, несмотря на разные начальные значения.

Стабильное распределение ступеней модели задается вектором . Несмотря на то, что популяция продолжает расти, по прошествии достаточного количества времени можно наблюдать популяцию из двух классов примерно в постоянной пропорции . То есть на каждого взрослого будет около  незрелых.

Было доказано много теорем о конкретных типах матриц, появляющихся в моделях Лесли и Ашера. Одной из них является следующая.

Теорема. Модель Лесли, в которой две последовательные возрастные категории являются фертильными (т. е. имеющие как , так и ), будет иметь положительное реальное строго доминирующее собственное значение и, следовательно, стабильное распределение по возрасту.

Хотя такие теоремы полезны для общих утверждений о том, как должны вести себя популяции, когда дело доходит до какой-либо конкретной модели, всегда необходимо фактически найти собственные векторы и собственные значения.

Завершим параграф небольшим экскурсом в комплексные числа. Как увидите в дальнейшем, вычисляемые в приведённых выше примерах собственные векторы и собственные значения, немного вводят в заблуждение, поскольку собственные векторы и собственные значения часто оказываются с комплексными числами вида , содержащими вместе с действительными числами  и  мнимую единицу , то есть такое число, для которого . Ясно, что среди действительных чисел такой единицы не существует. Несмотря на это, дальнейшее обсуждение асимптотического поведения динамических моделей будет возможным, если понять, как вычислить модуль комплексного числа.

Определение.  Модуль комплексного числа  равен  .

Обратите внимание, что если , то это обычное значение абсолютного значения для вещественных чисел. Кроме того, , а  только тогда, когда , как и хотелось бы для чего-то, что претендует на измерение числа по абсолютной величине. Менее очевидными свойствами являются перечисленные в теореме:

Теорема. Для любых вещественных чисел ,

а)

б)

в) .

Обратите внимание, что все три свойства модуля очевидно верны и в частном случае, когда  и , тогда абсолютное значение просто означает то, с чем знакомы для вещественных чисел.

Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное
История алхимии. Путешествие философского камня из бронзового века в атомный
История алхимии. Путешествие философского камня из бронзового века в атомный

Обычно алхимия ассоциируется с изображениями колб, печей, лабораторий или корня мандрагоры. Но вселенная златодельческой иконографии гораздо шире: она богата символами и аллегориями, связанными с обычаями и религиями разных культур. Для того, чтобы увидеть в загадочных миниатюрах настоящий мир прошлого, мы совершим увлекательное путешествие по Древнему Китаю, таинственной Индии, отправимся в страну фараонов, к греческим мудрецам, арабским халифам и европейским еретикам, а также не обойдем вниманием современность. Из этой книги вы узнаете, как йога связана с великим деланием, зачем арабы ели мумии, почему алхимией интересовались Шекспир, Ньютон или Гёте и для чего в СССР добывали философский камень. Расшифровывая мистические изображения, символизирующие обретение алхимиками сверхспособностей, мы откроем для себя новое измерение мировой истории. Сергей Зотов — культурный антрополог, младший научный сотрудник библиотеки герцога Августа (Вольфенбюттель, Германия), аспирант Уорикского университета (Великобритания), лауреат премии «Просветитель» за бестселлер «Страдающее Средневековье. Парадоксы христианской иконографии». 

Сергей О. Зотов , Сергей Олегович Зотов

Религиоведение / Учебная и научная литература / Образование и наука
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)

Предлагаемая монография стала результатом многолетней работы авторов над темой изображения России во французской прессе в период Революции и Наполеоновских войн. Двадцатипятилетие 1789-1814 гг. характеризовалось непростыми взаимоотношениями России и Франции, то воевавших друг с другом, то бывших союзниками. Авторы анализируют механизмы функционирования прессы и управления ею со стороны государства, а также то, как публикации в центральных и региональных газетах меняли общественное мнение о Российской империи и об отдельных аспектах ее жизни. Кроме материалов прессы, авторы активно привлекают архивные источники и опубликованные письменные свидетельства эпохи.В формате PDF A4 сохранен издательский макет.

Андрей Александрович Митрофанов , Евгения Александровна Прусская , Николай Владимирович Промыслов

История / Учебная и научная литература / Образование и наука