Несколько лет назад в Англии я работала с группой учителей, которые решили отказаться от деления на группы по уровню успеваемости в старших классах, когда узнали о методе комплексного обучения, описание которого приведено ниже. У них не было ни специальной подготовки, ни такой замечательной программы, как в школе Феникс-Парк, но они узнали о комплексном обучении и подобрали ряд задач категории «низкий пол, высокий потолок». В конце первой недели преподавания в новых классах, сформированных с ориентацией на мышление роста, один учитель с удивлением обнаружил, что первым задачу решил ученик, который раньше был в группе самого низкого уровня. И позже этих учителей приятно удивляло то, что ученики с разными уровнями успеваемости используют творческие методы решения задач. Они были в восторге от того, насколько хорошо ученики отреагировали на отказ от деления на группы по успеваемости. Вдобавок и проблемы с дисциплиной, обострения которых они опасались, исчезли. Мне было интересно узнать об этом, поскольку эти учителя выражали обеспокоенность по поводу отказа от формирования групп по успеваемости и по поводу того, смогут ли дети работать вместе. Учителя обнаружили, что, когда они дают открытые задачи, все ученики проявляют к ним интерес, стараются проявить себя и получают необходимую поддержку. Со временем ученики, которых раньше считали слабыми, повысили свой уровень. При этом класс не делился на «способных» и «неспособных». Он состоял из увлеченных детей, которые учатся вместе и помогают друг другу.
2. Предоставление возможности выбирать задачи
Ученикам, которые занимаются в классах, ориентированных на мышление роста, не всегда нужно работать над одними и теми же задачами. Им можно предложить разные задания разных уровней и из разных областей. Важно, чтобы сами ученики могли выбирать задачу, над которой хотят работать, а не учителя. Однажды во время урока в школе Феникс-Парк, на котором я присутствовала, ученикам предложили выбрать одну из двух задач: найти фигуры, площадь которых составляет 64 единицы; найти фигуры, объем которых составляет 216 единиц. В четвертом классе я видела, как учитель предлагает ученикам использовать дробные полоски или палочки Кюизенера, для того чтобы найти как можно больше дробей, эквивалентных 1
/4, а в качестве дополнительного, более трудного задания — найти дроби, эквивалентные 2/3. Расширенные задания и различные задачи с дополнительными вопросами — это и есть то, что можно (и, пожалуй, целесообразно) делать на каждом уроке. Все ученики должны иметь возможность выбора или решения более сложных и интересных задач.Порой некоторых учеников необходимо подталкивать к тому, чтобы они взялись за решение предложенной на уроке задачи повышенной сложности. При постановке задач важно, чтобы у учеников не возникала мысль, будто они могут работать только над простой задачей или учитель не считает их способными решить что-то более сложное. Наблюдая, как эту стратегию применяют разные учителя, я видела, как они сообщают ученикам информацию о том, что задачи охватывают разные темы или некоторые из них особенно сложны. Ученики счастливы, когда у них есть возможность решать, над чем они хотят работать и когда им предлагают дополнительные, более сложные и интересные задачи.
3. Индивидуальные пути обучения