Задачи по математике, которые используются в смешанных группах, очень важны. Но не менее важны и правила, и ожидания в отношении того, как ученики должны работать вместе. Опытные учителя знают, что групповая работа на уроках может закончиться неудачей, если ученики принимают в ней неравноценное участие. Если дети предоставлены себе и их никто не стимулирует к формированию эффективных правил работы в группе, скорее всего, произойдет вот что: некоторые возьмут на себя б
В ходе четырехлетнего научного исследования, которое финансировал Национальный научный фонд, я сравнила разные подходы к преподаванию математики. Вместе с командой своих студентов я отслеживала успехи более 700 учеников разных старших школ (Boaler, 2008; Boaler & Staples, 2005). Примерно половину участников составляли ученики школ, в которых классы формировались по принципу успеваемости, преподавание математики носило формальный характер, а уровень знаний оценивался с помощью тестов. Другая половина участников — ученики городской школы в Калифорнии, которую я назвала Рейлсайд. В ней учителя отказались от деления учеников на группы по уровню успеваемости и преподавали математику в рамках комплексного подхода. Состав учеников этой школы был очень разнородным; в ней было больше учеников, изучающих английский язык, и более высокий уровень культурного многообразия, чем в любой другой школе. В Рейлсайд было примерно 38% учеников-латиноамериканцев, 23% афроамериканцев, 20% белых, 16% учеников азиатского происхождения и выходцев с тихоокеанских островов, 3% представителей других групп. В начале нашего исследования, когда ученики только окончили среднюю школу, мы организовали оценку уровня знаний по математике за прошедший период. В то время успеваемость учеников Рейлсайд была гораздо ниже по сравнению с другими городскими школами, принимавшими участие в исследовании, что не так уж нетипично для городской среды, в которой ученикам приходится решать много жизненных проблем (рис. 7.1).
Рис. 7.1.
Результаты предварительной оценки уровня знанийЧерез год ученики Рейлсайд догнали тех, которые учились традиционным способом (рис. 7.2). Через два года их уровень успеваемости стал гораздо выше (рис. 7.3).
Рис. 7.2.
Результаты оценки уровня знаний, год 1-йРис. 7.3.
Результаты оценки уровня знаний, год 2-йКроме того, ученики Рейлсайд получали гораздо большее удовольствие от математики и продолжили изучать этот предмет на более высоком уровне. В школе 41% учеников прошли углубленный курс начал анализа и анализа (из тех, кто обучался традиционным способом, таких было 27%). Кроме того, в Рейлсайд снизилось или исчезло расовое неравенство в плане успеваемости учеников (YouCubed at Stanford University, 2015a).
Не так давно была опубликована важная книга, посвященная анализу достижений Рейлсайд и применяемых в ней справедливых методов обучения, которую написали учителя этой школы (Nasir, Cabana, Shreve, Woodbury, & Louie, 2014).
Ниже представлен анализ того, как школе удалось добиться таких впечатляющих результатов, придерживаясь четырех принципов комплексного обучения: многоплановости, распределения ролей, присвоения компетенции и коллективной ответственности учеников (рис. 7.4).
Рис. 7.4.
Комплексное обучениеМногоплановость