Читаем Математика для гуманитариев. Живые лекции полностью

А.С.: Безусловно. Терпение, доказывать этот факт мы будем позже. Пока что нам нужна подготовительная работа, проделанная математиком Эйлером. Леонард Эйлер обнаружил следующий факт. Что такое многогранник каждый понимает. Любой многогранник это как бы изломанная поверхность шара. Эйлер нарисовал многогранник на шаре: спроецировал ребра и вершины многогранника, лежащего внутри шара, на поверхность шара. (Слово «спроецировал» означает следующую процедуру: расположил внутри стеклянного шара макет многогранника, сделанный из проволочек, и зажег в центре шара маленькую лампочку. На поверхности шара будут видны тени от ребер это и есть проекции ребер.)

Рис. 25. Повторяя путь Эйлера, нарисуем на шаре многогранник.


И с помощью этого приема доказал замечательную теорему с совершенно удивительной формулировкой. Называется теорема «Формула Эйлера для многогранника».

Пусть у многогранника будет: В — количество вершин, Р — количество ребер, Г — количество граней. Эти количества можно непосредственно подсчитать, глядя на модель многогранника. Тогда обязательно будет

В − Р + Г = 2.

Независимо от того, какой мы взяли многогранник. Теорема верна и для куба, и для тетраэдра (рис. 26), и для любого другого многогранника, имеющего границей «изломанную поверхность шара». Всегда это выражение будет равно 2.

Рис. 26. Слева куб (невидимые линии не изображены), справа — тетраэдр из проволоки.


Тетраэдр это любая треугольная пирамида. Раньше в такой форме делали молочные пакеты. Давайте посчитаем у молочного пакета количество вершин, ребер и граней. Сколько вершин у молочного пакета?

Слушатель: 4.

А.С.: В = 4. Сколько ребер у нашего тетраэдра?

Слушатели: 6.

А.С.: Без сомнения. А граней?

Слушатели: 4.

А.С.: Верна формула? 4–6 + 4 = 2. Верна.

А теперь рассмотрю другую пирамиду — четырехугольную (рис. 27).

Рис. 27. Схема 4-угольной пирамиды.


У нее 5 вершин, 8 ребер и 5 граней. Формула верна: 5–8 + 5 = 2.

Слушатель: А количество вершин и граней всегда совпадает?

А.С.: Нет, ни в коем случае не всегда. Давайте посмотрим на куб (рис. 26, слева).

У обычного куба — 8 вершин, 12 ребер и 6 граней. (Бывают еще и необычные кубы… например, 4-мерные.)

Снова получаем два: 8 − 12 + 6 = 2.

Никуда от этой формулы не денешься. Думаю, что до Эйлера эту закономерность тоже кто-то замечал, но важно не первым заметить, а громко об этом заявить. Так сказать, довести до сведения широких масс.

Не буду сегодня ничего больше доказывать. Вместо этого я расскажу о некоторых великих математических загадках прошлого.

Давайте вспомним формулу для решения квадратного уравнения с коэффициентами а, b, c:

На самом деле не очень важно, как конкретно она выглядит. Важно то, что это — универсальный метод решения квадратного уравнения. Какие бы они ни были, эти а, b и с, если действие произвести, вы получите какое-то число.

Тут есть две точки зрения на эту ситуацию. Если написана некоторая формула, то она может случайно оказаться верной для каких-то чисел а, b, c, то есть для какого-то квадратного трехчлена. Для одного случайно оказалась верной, для другого оказалась верной. Сколько раз нужно проверять, чтобы точно сказать, что она всегда верна? Бесконечное количество раз. Но можно сделать иначе. Можно взять эту формулу, подставить в исходное уравнение

ах2 + c = 0

и убедиться в том, что всё сократится, и вместо символов а, b, с слева возникнет ноль. Это и будет означать, если мы верим в язык символов, что формула верна. У нас всё сократилось, в любом случае, какие бы а, b, c мы ни взяли.

Слушатель: Простите, а для чего нужна эта формула?

А.С.: Для чего она нужна? Ну, я бы сказал так. Лично для меня ответ такой: для красоты. Для того, чтобы быть уверенным, что математика может дать какие-то универсальные рецепты вычислений. Сейчас, конечно, компьютеры решают задачи посложнее этого уравнения, но раньше она была нужна для быстрого вычисления.

Вы распределяете земельные участки, измеряете какие-то прямоугольные куски, у вас получается квадратное уравнение. Можно медленно прикидывать, как это сделать, а можно быстро получить ответ.

Слушатель: То есть практическое применение какое-то было?

А.С.: Ну, раньше — да. Дальше эта идея развивалась так. А что, если я напишу уравнение:

ax3 + 2 + сх + d = 0?

Могу я написать универсальную формулу, с помощью которой можно вычислить x? При этом разрешается складывать, вычитать, умножать, делить и даже извлекать корни, причем любой степени. Но больше ничего не разрешается.

Слушатель: От куба и дальше такого сделать нельзя.

А.С.: Можно; но эту формулу не изучают в школе. Формула для кубического случая была придумана в первой половине XVI века. Несколько математиков работали над этой проблемой одновременно. Сейчас формула носит имя Джироламо Кардано, но он не придумал ее, а опубликовал метод другого математика (т. е. «громко об этом заявил»).

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии