Чтобы выписать эту формулу, мне понадобится целая доска, поэтому я не буду этого делать. Как только поняли механизм решения кубического уравнения, сразу придумали формулу для решения уравнения четвертой степени. Она была еще страшнее. Вывел ее ученик Кардано, по фамилии Феррари. Всё это происходило в XVI веке, когда математики уже свободно обращались с буквами, поэтому был сформулирован самый общий вопрос. Можно ли написать формулу для решения уравнения произвольной степени:
(
Пусть она займет 10 досок, пусть она займет 100 досок. Погоня за этой формулой продолжалась до конца XVIII века. А в самом начале XIX века прозрение спустилось на несколько человек сразу, из которых самым главным я считаю французского математика Эвариста Галуа (хотя первым ситуацию в общих чертах осознал Жозеф Луи Лагранж). Было доказано, что никакая конечная формула не может быть решением уравнения произвольной степени. Такой формулы не существует. Не потому, что люди еще глупые или не все формулы перебрали или, может быть, они не так ставили корни. Никакое выражение, содержащее плюс, минус, умножить, разделить и извлечь корень любой степени не может при подстановке в уравнение
Еще очень известна теорема Ферма. Доказательство теоремы Ферма — это примерно 120 страниц трудного текста для очень посвященного человека.
Про нее мы поговорим потом, а сейчас просто запишем ее формулировку. Она очень простая.
Ни для каких целых чисел
Эту теорему доказывали с 1637 по 1994 год. Впоследствии были решены еще две или три величайшие математические проблемы прошлых веков. Сейчас математика пожинает плоды всего своего существования.
Слушатель:
Это сделано с помощью компьютеров?А.С.:
Нет. Единственное, что сделали с помощью компьютера — это так называемая «проблема четырех красок». XX век — прорыв в авиации, в космосе. Но самый большой прорыв в это время был в математике. В ней перевернули всё вверх дном: сняли кучу гипотез, превратили их в теоремы. На моей памяти сняли несколько проблем, которые стояли веками, если не тысячелетиями.Слушатель:
А это правда, что у теоремы Ферма нет практического применения?А.С.:
А кто его знает? Она (точнее, метод ее доказательства) может иметь некоторое отношение к физической модели мира. На самом деле, последнее, что интересно математику, это то, какое у теоремы практическое применение. Математика в каком-то смысле сродни настоящей религии. Это вещь в себе. Если она кому-то помогает, математиков это особо не интересует. Люди, которые занимаются прикладной математикой, имеют совершенно другое настроение. Это — другие люди. Как, например, разнятся между собой учителя и чиновники. То же самое с математиками. Человек, который формулу ищет, и человек, который хочет с помощью нее что-то сделать, — это два разных человека.На этом мы закончим первую лекцию. На следующем занятии мы будем доказывать теорему про футбольный мяч и формулу Эйлера.
Лекция 2
География бублика и паркет, который нельзя купить
А.С.:
Сегодня мы займемся тем, что называется