Читаем Математика для гуманитариев. Живые лекции полностью

100 лет назад топология уже достаточно хорошо оформилась, а началась она, наверное, с Эйлера (того самого Эйлера, формулу которого мы сегодня будем с вами изучать). Были сформулированы определения важнейших объектов топологии: линия, поверхность, объём, многомерное пространство. Было осознано, что у топологических объектов имеется важное свойство: размерность. Например, линия — это одномерный объект (его можно при этом поместить в 1-мерное пространство, в 2-мерное, в 3-мерное и даже в так называемое «4-мерное пространство»). Поверхность — двумерный объект (он может располагаться в 2-мерном пространстве, в 3-мерном, 4-мерном и так далее). Тело, имеющее положительный объём — это 3-мерный объект; но оно может располагаться в 3-мерном, 4-мерном, 5-мерном… пространствах. Ниже всё это будет рассматриваться в самых простых случаях, поскольку свойства топологических объектов, лежащих в 4-мерном, 5-мерном, 6-мерном… пространствах недоступны непосредственному геометрическому восприятию человека. Может быть, это хорошо, что человек не может совершить даже небольшую и короткую по времени прогулку в «подлинное» 4-мерное пространство. Вернувшись из такой прогулки, этот бедняга мог бы с ужасом обнаружить, что сердце у него теперь находится не с левой, а с правой стороны (и ему, кроме того, придется примириться с тем фактом, что он стал левшой, хотя ранее им не был). Так что с 4-мерным пространством шутки плохи. Но и в 3-мерном пространстве (казалось бы, так хорошо нам знакомом) топология сумела обнаружить ряд совершенно сногсшибательных фактов. Приступим же к ее изучению (конечно, на общеописательном уровне, не достигая стопроцентной строгости изложения).


Допустим, у вас есть глобус, или футбольный мяч, или арбуз. Это объекты по сути разные, а по форме они одинаковые. Как говорится на житейском языке, это тела, которые имеют форму шара. Однако с точки зрения топологии арбуз резко отличается от глобуса и от футбольного мяча: арбуз внутри заполнен веществом, а глобус и мяч внутри пустые. Разумно считать, что толщина картонной поверхности глобуса и толщина оболочки мяча имеют нулевую толщину. Тогда глобус и мяч являются двумерными объектами, а арбуз — трехмерным. Но можно мысленно рассматривать поверхность арбуза — получится «двумерный объект, ограничивающий исходный трехмерный арбуз». Ниже мы будем говорить просто о поверхности шара (неважно, какого диаметра). Допустим, что мяч имеет диаметр 20 см, поверхность арбуза — диаметр 50 см, а глобус — 200 см. Для лучшего понимания, что такое топология, рассмотрим также кубик со стороной 20 см, склеенный из бумаги, и таких же размеров кубик, сделанный из кусочков проволоки, идущих вдоль ребер куба. Итого у нас имеется пять объектов. С общежитейской точки зрения их можно разделить на две группы — «круглые» (3 шт.) и «кубообразные» (2 шт.). С точки зрения человека, привыкшего всё измерять сантиметром (например, портного), их надо разделить на две группы по другому принципу: «предметы с размерами порядка 20 см» (3 шт.) и «более крупные предметы» (2 шт.). А с точки зрения математика-тополога, здесь имеются четыре абсолютно одинаковых предмета и один особенный (а именно, проволочный куб). И тополог даже даст обоснование, почему он так считает: первые четыре объекта являются двумерными, а последний объект — одномерный. Таким образом, топология не только не видит разницы между поверхностью шара диаметра 20, 50 или 200 см, но и не видит, разницы, между поверхностью куба и поверхностью шара! Итак, тополог надевает на себя «волшебные очки», которые не позволяют определить ни размеры, ни форму предметов. Что же он тогда через них сможет разглядеть? Он сумеет разглядеть самое глубинное отличие представленных ему предметов друг от друга, их, так сказать, конструкцию. Например, добавим к этим пяти предметам еще и бублик с внешним диаметром 20 см и будем интересоваться не самим бубликом, заполненным тестом, а только его поверхностью. А также добавим обыкновенное кольцо из проволоки (диаметром 1 см). Что скажет тогда тополог? «С точки зрения размерности здесь имеется два типа объектов: двумерные и одномерные. Но поверхность бублика резко, принципиально отличается от поверхности шара. Точно так же проволочный кубик резко отличается от кольца из проволоки. Итак, здесь представлены четыре различных топологических типа: поверхность шара (4 предмета), поверхность бублика, окружность, проволочный кубик».

Врезка 1. Упражнение для слушателей (необязательное; но ответ полезно прочесть)

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии