Читаем Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ полностью

Развитие во времени даже очень простой системы с тремя акторами может представлять собой некоторую комбинацию «процветания» и «деградации». Так, на рисунке 5 на протяжении целых 19 моментов времени кажется, что система развивается по эффективному сценарию. Однако равновесие селектора устанавливается ниже единицы (0,98, рис. 6), и в конечном счете система деградирует.

Рис. 5

Рис. 6

Политическая нагрузка на систему

Каким образом выбор акторами стратегий политического инвестирования влияет на равновесную системную эффективность? Первое напрашивающееся соображение состоит в том, что для успешной системы доля вкладываемых в политику ресурсов i должна быть больше у тех акторов, которые обладают большей индивидуальной эффективностью. Другими словами, должна существовать положительная связь между индивидуальной эффективностью и долей инвестиций в изменение институтов.

Действительно, многочисленные и разнообразные вычислительные эксперименты показывают, что вероятность реализации успешного сценария возрастает при наличии такой связи. Однако, как ни странно, это условие не является ни необходимым, ни достаточным. Прежде всего, важна не только структура величины i (кто больше вкладывает в политику), но и общая политическая нагрузка на систему (сколько все общество вкладывает в политику). Исследование модели показывает, что существует формально трудноопределимый, но совершенно жесткий «предел политического инвестирования», после которого система коллапсирует независимо от связи между частной эффективностью и вложением в институты. Если слишком много ресурсов уходит из производительной сферы в борьбу вокруг институтов, средств на развитие оказывается недостаточно для поддержания роста.

Покажем это посредством двух простых вычислительных экспериментов. В первом из них, в системе три актора, индивидуальная эффективность установлена так же, как в базовом примере: x1=0,2, x2=1, x3=1,8. Начальное значение селектора установим посередине – в точку 1. Положим, =1 . Будем задавать значения политических стратегий i случайным образом, используя функции равномерного распределения. Проведем несколько серий вычислительного эксперимента, меняя в каждой серии максимально возможное значение i. В первой серии установим maxi=0,01; во второй – maxi=0,1; в третьей – maxi=0,2; в четвертой – maxi=0,3; в пятой – maxi=0,4. Таким образом, от серии к серии мы будем повышать предел политического инвестирования – потолок для доли ресурсов, вкладываемых в изменение правила. Проведя в рамках каждой серии по 1000 реализаций модели, подсчитаем число случаев, когда равновесная эффективность системы была выше единицы. В результате получим вероятность реализации успешной траектории в зависимости от предела политического инвестирования31. Эта зависимость показана на рисунке 7.

Рис. 7.

Очевидно, что с увеличением максимальной разрешенной доли ресурсов, инвестируемых в политику, вероятность выйти на эффективную траекторию снижается драматически. Так, если в системе каждый актор тратит на институциональное инвестирование не более 1% (0,01) своих ресурсов, почти в половине случаев реализуется «сценарий процветания». Это, к слову, именно та половина, где более эффективный актор x3=1,8 тратит на политическое влияние больше, чем неэффективный актор x1=0,2 . Если же акторам разрешается инвестировать в институты до 40% (0,4) своих ресурсов, эффективная траектория достигается менее чем в 10% случаев. При проведении такого же эксперимента при других начальных значениях селектора и параметрах бета эта картина качественно не меняется.

Второй эксперимент сфокусирован на стратегии самого эффективного актора, в нашем случае x3=1,8 . Пусть только этот игрок инвестирует в изменение институтов, менее эффективные акторы x1=0,2 и x2=1 все ресурсы тратят на производство. Вектор политических стратегий тогда принимает вид (0,0,3), где 3 – вновь случайная равномерно распределенная величина. Но теперь мы позволим ей принимать значения от 0 до 1, давая самому эффективному актору возможность инвестировать в политику любую долю имеющегося у него ресурса.

Казалось бы, запрет для всех акторов, кроме наиболее эффективного, на институциональное влияние гарантирует выход на траекторию успешного развития: правило отбора . Ресурсы, инвестированные в политику, определяют политический вес каждого актора. Политические веса определяют положение селектора st имеет только одно равновесное состояние, соответствующее высокой эффективности 1,8. Причем переход селектора в это равновесное состояние в системе без политической конкуренции произойдет очень быстро – уже в первый момент времени независимо от начального условия st=0.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей