Читаем Отличная квантовая механика полностью

Поскольку cos2ϕ = (cos2ϕ+1)/2 для любого ϕ, это условие эквивалентно

cos[2(kz − ωt + ϕH)] + cos[2(kz − ωt + ϕV)] = const.

Воспользовавшись еще одним тригонометрическим тождеством: cosϕ + cosθ = 2cos[(ϕ + θ)/2]cos[(ϕ − θ)/2], получим

cos[2(kz − ωt) + ϕH + ϕV]cos(ϕH − ϕV) = const.

Поскольку первый множитель в левой части приведенного выше условия не может быть константой, это условие выполняется тогда и только тогда, когда cos (ϕH — ϕV) = 0, т. е.


Решение для упражнения В.5. Мы попробуем доказать, что существует множество чисел {A, B, C, D}, не зависящих от z и t, таких, что

где EH(z, t) и EV(z, t) — соответственно горизонтальная и вертикальная компоненты волны, задаваемой уравнением (В.1). Из аналитической геометрии известно, что (РВ.2) представляет собой одно из конических сечений: гиперболу, параболу или эллипс. Поскольку и EH, и EV — ограниченные функции, (РВ.2) может описывать только эллипс, крайними случаями которого являются круговая и линейная траектории.

При помощи тригонометрических тождеств запишем (В.1) следующим образом:

EH = AH(cHc — sHs);

EV = AV(cVc — sVs), (РВ.3),

где мы определили c = cos(kz — ωt), s = sin(kz — ωt), cH,V = cos ϕV,H и sH,V = sin ϕV,H. Теперь преобразуем левую часть уравнения (РВ.2):

где мы использовали Приведенный результат упрощается до вида

если A, B и D таковы, что коэффициенты перед переменными c2s2 и cs, зависящими от (z, t), в уравнении (РВ.4) превращаются в нуль:

Это система двух уравнений с тремя неизвестными, поэтому она всегда имеет нетривиальное решение. Для данного решения выполняется уравнение (РВ.5), которое идентично уравнению (РВ.2) при


Решение для упражнения В.6. Показатели преломления ne и no изменяют длину обыкновенной волны согласно λo = λ/no, а необыкновенной — согласно λe = λ/ne, что соответствует волновым числам ke =ne/λ и ko =no/λ. Проходя сквозь кристалл, эти волны приобретают фазы ϕe = ke L и ϕo = ko L, так что Δϕ = 2π(ne — no)L/λ.


Решение для упражнения В.7. Полуволновые и четвертьволновые пластинки с вертикальными оптическими осями сдвинут фазу вертикального компонента поля на π и π/2 соответственно. См. рис. РВ.2.


Решение для упражнения В.9. Картины линейной поляризации с углами ±45° соответствуют AH = ±AV и ϕH = ϕV + mπ, где m — целое число. Сравнивая это условие с условием из упр. В.4(b), находим, что волны с поляризацией ±45° и круговой поляризацией получаются друг из друга путем добавления ±π/2 к ϕV — а это в точности то, что делает четвертьволновая пластинка.


Решение для упражнения В.10. Линейная поляризация под углом θ подразумевает, что AH = Acosθ, AV = Asinθ, где A действительно и положительно, а ϕH — ϕV = 0. Без потери общности мы можем считать, что ϕH = ϕV = 0. Перед волновой пластинкой у нас такая картина:

EH(z,t) = Acosθcos(kz — ωt); (РВ.6)

EV(z,t) = Asinθcos(kz — ωt),

а после нее —

EH(z,t) = Acosθcos(kz — ωt); (РВ.7)

EV(z,t) = Asinθcos(kz — ωt + π/2) = —Asinθsin(kz — ωt).

Из последнего результата следует, что

а это уравнение эллипса, оси которого ориентированы вертикально и горизонтально, причем отношение длин осей равно cos θ/sin θ (рис. РВ.3).


Решение для упражнения В.11. Как мы знаем из упр. В.5, в общем случае картина поляризации является эллиптической. Предположим, что амплитуды желаемой поляризационной картины вдоль большой и малой полуосей равны A1 и A2, а большая ось ориентирована под углом β к горизонтали. Обозначим θ = tg–1 (A2/A1) и Для начала возьмем горизонтально поляризованный свет амплитуды A и применим к нему четвертьволновую пластинку под углом θ к горизонтали. В системе отсчета волновой пластинки это действие эквивалентно применению четвертьволновой пластинки с вертикальной оптической осью к линейной поляризации с углом —θ. Следуя логике предыдущего упражнения, мы получаем эллиптическую картину с осями, расположенными вдоль и поперек оптической оси пластинки и с соотношением длин осей cosθ/sinθ = A1/A2. А в лабораторной системе отсчета этот эллипс расположен под углом θ к горизонту. Остается повернуть данный эллипс, это достигается при помощи полуволновой пластинки под углом (β + θ)/2 (рис. РВ.4).


Решение для упражнения В.12. В системе отсчета, ориентированной под углом 45° по отношению к лабораторной системе отсчета, оптическая ось четвертьволновой пластинки вертикальна. Линейно поляризованный свет, проходящий через эту волновую пластинку, порождает картину, описываемую уравнением

где θ — угол между поляризацией и осью волновой пластинки, а (см. упр. В.10). Чтобы перейти к лабораторной системе отсчета, мы поворачиваем вектор поля в плоскости x — y на 45° при помощи матрицы, найденной в упр. A.41,

и находим

Это соответствует одинаковой интенсивности A2(cosθ2 + sin2θ)/2 = A2/2 для горизонтальной и вертикальной поляризации.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука